Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Ngọc Toàn
Xem chi tiết
Mr Lazy
19 tháng 6 2015 lúc 10:36

+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)

\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)

\(\Rightarrow xy^9\le3^9\)

+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)

\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)

Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)

➻❥ɴт_тнủʏ︵²⁰⁰⁴
2 tháng 10 2017 lúc 12:35

x + 25 = 64

x         = 64 - 25

x         = 39

Vậy x = 39

Kiệt Nguyễn
15 tháng 8 2020 lúc 21:39

Áp dụng bất đẳng thức AM-GM cho ba số dương, ta có:

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}.\frac{1}{\sqrt{x}}.x}=3\left(1\right)\)

\(\frac{27}{\sqrt{3y}}+\frac{27}{\sqrt{3y}}+3y\ge3\sqrt[3]{\frac{27}{\sqrt{3y}}.\frac{27}{\sqrt{3y}}.3y}=27\left(2\right)\)

Cộng theo vế các bất đẳng thức (1) và (2) ta được: \(2\left(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\right)+x+3y\ge30\)

\(\Rightarrow2\left(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\right)\ge30-\left(x+3y\right)\ge20\)(Do theo giả thiết thì \(x+3y\le10\))

\(\Rightarrow\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)(đpcm)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Khách vãng lai đã xóa
Minh Triều
Xem chi tiết
Nguyễn Tuấn
5 tháng 4 2016 lúc 21:56

dùng buniacosky với x+3y<10 là dc

Minh Triều
5 tháng 4 2016 lúc 22:03

Giải ra

s2 Lắc Lư  s2
5 tháng 4 2016 lúc 22:15

bạn vô câu hỏi tương tự nha

Bùi Nguyễn Hoài Anh
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
VUX NA
Xem chi tiết
Edogawa Conan
4 tháng 9 2021 lúc 20:03

Ta có: \(\dfrac{1}{\sqrt{x}}+\dfrac{27}{\sqrt{3y}}=\dfrac{1}{\sqrt{x}}+\dfrac{81}{3\sqrt{3y}}\ge\dfrac{\left(1+9\right)^2}{\sqrt{x}+3\sqrt{3y}}=\dfrac{100}{\sqrt{x}+3\sqrt{3y}}\) (1)

Áp dụng BĐT của Cô-si ta có:

    \(\sqrt{x}=\sqrt{1.x}\le\dfrac{1+x}{2};3\sqrt{3y}\le\dfrac{9+3y}{2}\)

\(\Rightarrow\left(1\right)\ge\dfrac{100}{\dfrac{1+x}{2}+\dfrac{9+3y}{2}}=\dfrac{100}{\dfrac{10+x+3y}{2}}\ge\dfrac{100}{\dfrac{10+10}{2}}=\dfrac{100}{10}=10\)

Dấu "=" xảy ra ⇔ x=1;y=3

Thức Vương
Xem chi tiết
๖Fly༉Donutღღ
16 tháng 3 2018 lúc 13:31

Đề bài thiếu điều kiện rồi :")))

thêm điều kiện đi rồi giải cho

Thức Vương
28 tháng 3 2018 lúc 19:35

x+y+z=3

Thức Vương
28 tháng 3 2018 lúc 19:35

xin lỗi mình quên :>>

hoàng thị huyền trang
Xem chi tiết
tth_new
19 tháng 9 2019 lúc 7:59

Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v

\(gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3\)

Ta có: \(LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\)

\(=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}\)

\(=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}\) (thay cái giả thiết vào:v)

\(\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}\)

\(=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}\) (1)

Từ giả thiết dễ dàng chứng minh \(ab\le1\). Từ đó thay vào (1) ta có đpcm.

Hoàng hôn  ( Cool Team )
25 tháng 9 2019 lúc 21:41

Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v

gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4gt⇔(x1​+1)(y1​+1)=4

Đặt \frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3x1​=a;y1​=b⇒(a+1)(b+1)=4⇒ab+a+b=3

Ta có: LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}LHS=3x2+1​1​+3y2+1​1​

=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}=3(a1​)2+1​1​+3(b1​)2+1​1​

=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}=a2+3​a​+b2+3​b​=(a+1)(a+b)​a​+(b+1)(a+b)​b (thay cái giả thiết vào:v)

\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}≤21​(a+1a​+b+1b​+a+ba+b​)=21​(a+1a​+b+1b​)+21​

=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}=21​(ab+a+b+1ab+3​)+21​=21​(4ab+3​)+21​ (1)

Từ giả thiết dễ dàng chứng minh ab\le1ab≤1. Từ đó thay vào (1) ta có đpcm.

Trần Văn Tâm
Xem chi tiết
Vũ Tri Hải
28 tháng 5 2017 lúc 23:41

ta có 3x + yz = x2 + xy + yz + zx = (x+y)(x+z)

do đó:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{\left(\sqrt{x^2+xy+yz+zx}+x\right)\left(\sqrt{x^2+xy+yz+zx}-x\right)}\)

\(\frac{x\left(\sqrt{\left(x+y\right)\left(x+z\right)}-x\right)}{xy+yz+zx}\le\frac{x\left(\frac{x+y+x+z}{2}-x\right)}{xy+yz+zx}\)\(\le\frac{x\left(y+z\right)}{2\left(xy+yz+zx\right)}\)

tương tự với 2 số hạng còn lại nên ta được: P\(\le\)1. đpcm

Tran Ngoc Lam Phuong
15 tháng 5 2020 lúc 17:53

hi minh ket ban nhe

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
15 tháng 5 2020 lúc 18:04

m.imgur.com/a/ls9dmpn

Cậu chịu khó đánh máy nhé ! Tớ dùng đt nên nhác phải đánh text lắm :(((

Cách mình ngắn hơn trên khá nhìu nha !!!!

Khách vãng lai đã xóa
Khôi 2k9
Xem chi tiết