Tích (2017!)(1+1/1)1(1+1/2)2...(1+1/2017)2017 được viết dưới dạng ab, khi đó (a, b) là cặp số nào ?
Tích 2017 ! 1 + 1 1 1 1 + 1 2 2 ... 1 + 1 2017 2017 được viết dưới dạng a b . Khi đó a ; b là cặp nào trong các cặp sau:
A. 2018 ; 2017
B. 2019 ; 2018
C. 2015 ; 2014
D. 2016 ; 2015
Đáp án A.
2017 ! 1 + 1 1 1 1 + 1 2 2 ... 1 + 1 2017 2017 = 2017 ! 2 1 1 3 2 2 4 3 3 ... 2018 2017 2017
= 2017 ! . 2 1 .3 2 .4 3 ....2018 2017 1 1 .2 2 .3 3 ...2017 2017 = 2017 ! . 2018 2017 1.2.3...2017 = 2017 ! . 2018 2017 2017 ! = 2018 2017
Suy ra a = 2018 ; b = 2017
Tích 1 2019 ! 1 − 1 2 1 . 1 − 1 3 2 . 1 − 1 4 3 ... 1 − 1 2019 2018 . được viết dưới dạng a b , khi đó (a;b) là cặp nào trong các cặp sau
A. 2020 ; − 2019
B. (2019;-2019)
C. (2019;-2020)
D. (2018;-2019)
viết các số sau dưới dạng tích 2 số tự nhiên
a)111111222222
b)1111...1111222222...222
2017 chữ số 1 2017 chữ số 2
a, Gọi số thứ nhất là x, số thứ 2 là x + 1
Có x . (x +1) = 111222
<=> x² + x = 111222
Cộng cả 2 vế với 1/4, ta có
x² + x + 1/4 = 111222,25
<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức)
<=> (x + 1/2)² = 111222,25
<=> x + 1/2 = 333,5
<=> x = 333
Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222
b, tuong tự
a) Số thứ nhất là 333 số thứ hai là 334 tích 2 số là 111222
)Cho A là tích của hai số nguyên liên tiếp. Tìm dư trong phép chia A cho 3. Từ đó chứng minh 20192017 + 1 không thể viết dưới dạng tích của hai số nguyên liên tiếp
a) Cho A = 20142015 + 2/20142016+9 và B = 20142016 +2/20142017+9.So sánh A và B
b)Tìm số dư trong phép chia 22014 cho 1+2+22+23+...+22011.
c)Tìm số tự nhiên có 2 chữ số ab biết rằng ab3
= 75% 3ab
d) Cho 2017 số tự nhiên a1,a2,...,a2017 thoả mãn :
1/a1 + 1/a2+...+1/a2017 =1009
CMR có ít nhất 2 trong 2017 STN đã cho bằng nhau.
e)Tìm số nguyên dương n lớn nhất sao cho số 2017 viết được dưới dạng 2017=a1,a2,...,an đều là hợp số.
Mn giúp em với ạ.
Em đang cần gấp ak.
cho dãy số 1/1 ; 2/1 ; 1/2 ; 3/1 ; 2/2 ; 1/3 ; 4/1 ; 3/2 ; 2/3 ; 1/4 ....................... a . phân số thứ 2017 là phân số nào
b . phân số 1/2017 là phân số thứ bao nhiêu của dãy
Câu 1:
a) 1/2.3+1/3.4+1/4.5+...+1/19.20
b) (1/2-1)(1/3-1)(1/4-1)...(1/2017-1)
c) 2017+2017/2+2017/22+2017/23+...+2017/22017
Câu 2 : Tìm số nguyên n để các phân số sau là số nguyên :
a) 5/n+1
b) n-6/n+1
c) 2n+7/n+1
Câu 3 : Cho A =x-1/x+2 (với x là số nguyên)
a) Tìm x để A có nghĩa
b) Tìm x biết A= 2
c) Tìm giá trị của nhỏ nhất của A
Ai bt trả lời giúp mik nhé ^.^ yêu nhiều nhiều
Cảm ơn ................^.^ ^.^ ^.^ ..............!!!.......................@@@@@......................
Câu 1:
a) Gọi biểu thức đó là A
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vài công thức ta có ;
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) Gọi biểu thức đó là S
\(S=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2016}{2017}\right)\)
\(S=-\left(\frac{1.2.3.4....2016}{2.3.4.5....2017}\right)=-\left(\frac{1}{2017}\right)=-\frac{1}{2017}\)
Rất tiếc nhưng phần c mink ko biết làm, để mink nghĩ đã
Câu 2 :
a) \(\frac{5}{n+1}\)
Để 5/n+1 là số nguyên thì n + 1 là ước nguyên của 5
n+1=1 => n = 0
n + 1 =5 => n = 4
n+1=-1 => n =-2
n+1 = -5 => n = -6
b) \(\frac{n-6}{n+1}=\frac{n+1-7}{n+1}=1-\frac{7}{n+1}\)
Để biểu thức là số nguyên thì n + 1 là ước của 7
n + 1 = 1 => n= 0
n+1=7=> n =6
n + 1 = -7 => n =-8
n+1=-1 => n= -2
c) \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+6}{n+1}=2+\frac{6}{n+1}\)
Để biểu thức là số nguyên thì n+1 là ước của 6
n+1 = | 1 | -1 | 6 | -6 |
n = | 0 | -2 | 5 | -7 |
Từ đó KL giá trị n
CÂU 3 :
b) \(A=\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=1-\frac{2}{x+2}\)
x+2= | 1 | -1 | 2 | -2 |
x = | -1 | -3 | 0 | -4 |
Rồi bạn thử từng x khi nào thấy A = 2 thì chọn nha!!
Ai thấy đúng thì ủng hộ nha !!!
câu 1 :
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19+20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{19}+\frac{1}{19}\right)-\frac{1}{20}\)
\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2016}{2017}\right)\)
Vì phép nhân có thể rút gọn
Nên \(-1.\frac{-1}{2017}=\frac{1}{2017}\)
Câu 2 :
a) Ta có : \(\frac{5}{n+1}\)
Để \(\frac{5}{n+1}\in Z\Leftrightarrow5⋮n+1\Leftrightarrow n+1\inƯ_{\left(5\right)}=\){ -1; 1; -5; 5 }
Với n + 1 = -1 => n = -1 - 1 = - 2 ( TM )
Với n + 1 = 1 => n = 1 - 1 = 0 ( TM )
Với n + 1 = - 5 => n = - 5 - 1 = - 6 ( TM )
Với n + 1 = 5 => n = 5 - 1 = 4 ( TM )
Vậy Với n \(\in\){ - 2; 1; - 6; 4 } thì 5 \(⋮\)n + 1
Còn câu b nữa tương tự nha
" TM là thỏa mản "
cho a, b, c khác 0 và a+b+c khác 0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) Chứng minh rằng: a; b; có 2 số đối nhau
Từ đó suy ra \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{ac+bc+c^2}\)
\(\Leftrightarrow-\left(a+b\right)ab=\left(a+b\right)\left(ac+bc+c^2\right)\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=> a = - b hoặc b = - c hoặc c = - a
Xét a = - b ta có \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\)(1)
\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{\left(-b^{2017}+b^{2017}\right)+c^{2017}}=\frac{1}{c^{2017}}\)(2)
Từ (1);(2) \(\Rightarrow\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)
Xét tiếp 2 TH b = - c hoặc c = - a nữa ta có đpcm nha
a) Tìm số tự nhiên nhỏ nhấ,biết rằng khi chia số đó cho 29 ta có số dư là 5 và khi chia cho 31 có số dư là 28.
b) Ba số a,b,c thỏa mãn các điều kiện a+b+c=1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\).Chứng minh rằng:\(a^{2017}+b^{2017}+c^{2017}=1\)
Nếu chia hết cho 9 thì chia hết cho 31 dư 28-5=23
Hiệu của 31 va 29:31-29=2
Thương của phép chia cho 31 là:
(29-23):2=3
Số cần tìm là:
31*3+28=121
DS :121
b)1/a + 1/b + 1/c=1 / (a + b + c)
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau)
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0.
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)