đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
5 like
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
5 like
đố ai giải đc
cho :
x+y+z=0
x^2+y^2+z^2=1
chứng minh::x^5+y^5+z^5=5/4(2x^3−x)
đố ai lm đc :
nếu \(x+y+z=0, x^2+y^2+z^2=1, thì:x^5+y^5+z^5=\frac{5}{4}(2x^3-x)\)
đố ai giải đc:
\(x+y+z=0;x^2+y^2+z^2=1.Thìx^5+y^5+z^5=\frac{5}{4}\left(2z^3-z\right)\)
mọi n giải hộ bài này cái,đã có ai giải đâu-_______-''
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
mọi n giải hộ bài này cái,đã có ai giải đâu-_______-''
cho:x+y+z=0;x^2+y^2+z^2=1. Chứng minh x5+y5+z5=5/4 (2x3 - x)
like 10 lần đc chưa
Bài 3:Chứng minh biểu thức không phụ thuộc vào biến
1, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)- (y\(^2\)+1)(y\(^2\)-1)
3, x(y-z) + y(z-x) +z(x-y)
4, x(y+z-yz) -y(z+x-xz)+z(y-x)
5, x(2x+1) - x\(^2\)(x+2)+x\(^3\)-x+3
6, x (3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
`@` `\text {Ans}`
`\downarrow`
`1,`
\((y-5)(y+8)-(y+4)(y-1)\)
`= y(y+8) - 5(y+8) - [y(y-1) + 4(y-1)]`
`= y^2+8y - 5y - 40 - (y^2-y + 4y - 4)`
`= y^2+8y-5y-40 - y^2+y-4y+4`
`= (y^2-y^2)+(8y-5y+y-4y) +(-40+4)`
`= -36`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`2,`
\(y^4-(y^2+1)(y^2-1)\)
`= y^4 - [y^2(y^2-1)+y^2-1]`
`= y^4- (y^4-y^2 + y^2-1)`
`= y^4-(y^4-1)`
`= y^4-y^4+1`
`= 1`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`3,`
\(x(y-z) + y(z-x) +z(x-y)\)
`= xy-xz + yz - yx + zx-zy`
`= (xy-yx) + (-xz+zx) + (yz-zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`4,`
\(x(y+z-yz) -y(z+x-xz)+z(y-x)\)
`= xy+xz-xyz - yz - yx + yxz + zy - zx`
`= (xy-yx)+(xz-zx)+(-xyz+yxz)+(-yz+zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`5,`
\(x(2x+1)-x^2(x+2)+x^3-x+3\)
`= 2x^2+x - x^3 - 2x^2 + x^3 - x + 3`
`= (2x^2-2x^2)+(-x^3+x^3)+(x-x)+3`
`= 3`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`6,`
\(x(3x-x+5)-(2x^3+3x-16)-x(x^2-x+2)\)
`= 3x^2 - x^2 + 5x - 2x^3 - 3x + 16 - x^3 + x^2 - 2x`
`= -3x^3 + 3x^2 + 16`
Bạn xem lại đề bài.
`\text {#KaizuulvG}`