Cho A= (5m2-8m2-9m2). (-n3+4n3). Tìm m,n để A >= 0 với m,n thuộc Z
cho A= (5m2 - 8m2 - 9m2).(-n2 + 4n3)
Cho mk thêm câu hỏi tí nha
Với giá trị nào của m và n thì A> hoặc = 0
\(\text{vì: }m^2;n^2\ge0\text{ nên: }A\ge0\text{ khi: }\left(5-8-9\right)\left(-1+4n\right)\ge0\text{ hay: }-1+4n\le0\text{ hay: }n\le\dfrac{1}{4}\)
Cho A=3n-2/2n+4
a,Tìm n thuộc z để A là phân số
b,tìm a với n=0,n=(-1),n=2
c,tìm n thuộc Z để a là có giá trị nguyên
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
cho p/s M= 15 phẦN 2n+1
a) tìm n thuộc Z để m thuộc Z
b) tìm n để m thuộc -1 phần 3
c) tìm n thuộc Z để M rút gọn được
Tìm n+4/n+1(n thuộc Z)
a)Tìm điều kiện của n để M là một phân số
b)Tìm phân số M khi n=0,n=3,n=-7
c)Tìm n thuộc Z để M nhận giá trị là mottj số nguyên
\(M=\frac{n+4}{n+1}\)
a)\(ĐK:n\ne-1\)
b)\(n=0\)
Thay n=0 vào M ta được:
\(M=\frac{0+4}{0+1}=4\)
\(n=3\)
Thay n=3 vào M ta được:
\(M=\frac{3+4}{3+1}=\frac{7}{4}\)
\(n=-7\)
Thay n=-7 vào M ta được:
\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)
c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)
Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên
Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên
Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(3\right)\)
\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)
Vậy....
a, đk x khác -1
b, Với n = 0 => 0+4/0+1 = 4
Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)
Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)
c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
cho phân số:
M=4/(n-2)(n-1) với n thuộc Z
a)với số nguyên n nào thì phân số M không tồn tại
b)viết tập hợp A các số nguyên n để phân số M tồn tại
c)tìm phân số M;biết n=-13;n=0;n=13
Cho a^m=a^n (a thuộc Z; m,n thuộc N). Tìm các số m và n. , Cho a^m>a^n ( a thuộc Z; a>0; m,n thuộc N). So sánh m và n
1) cho A=n-1/2n+3
a) chứng minh A là phân số với mọi n thuộc Z
b) tìm phân số A khi n=0 và n=1
c) tìm n thuộc Z để A thuộc Z
d) tìm n thuộc Z để A tối giản
a) tìm x thuộc Z,để x+7 chia hết cho x (x khác 0)
b) tìm n thuộc Z,để cho 2n+1 là ước của 2n-1
c)Chứng tỏ tổng S chia hết cho 50
S=(x-1)+(x-3)+(x-5)+....+(x-99)
d) tìm số nguyên n để n+1 là bội của n-1
e) chứng minh rằng nếu m thuộc Z thì A=m.(m+2)-m.(m-9)-11 là bội của 11
f) tìm tất cả các số nguyên a,b sao cho a.b=(-2)
P/S: các bn làm nhanh giúp mình trong hôm ny nghen
Cho biểu thức M = 3n+19/n-1
a) Tìm n thuộc N* để M là một số tự nhiên
b) Tìm n thuộc Z để M là 1 phân số tối giản
M = \(\dfrac{3n+19}{n-1}\)
M \(\in\)N* ⇔ 3n + 19 ⋮ n - 1
⇔ 3n - 3 + 22 ⋮ n - 1
⇔ 3( n -1) + 22 ⋮ n - 1
⇔ 22 ⋮ n - 1
⇔ n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}
⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}
Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}
b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1
Ta có: \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được:
3n + 19 - (3n - 3) ⋮ d
⇒ 3n + 19 - 3n + 3 ⋮ d
⇒ 22 ⋮ d
Ư(22) = { - 22; -11; -2; -1; 1; 2; 22}
⇒ d \(\in\) {1; 2; 11; 22}
nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22
nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11
Vậy để phân số M tối giản thì
n \(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}