Cho a = 111...11 ( 2n chữ số 1) , b = 44....4 ( n chữ số 4).
Chứng minh rằng ; a + b + 1 là số chính phương
Cho a= 111....11(2n chữ số 1) b= 444....44(n chữ số 4)
Chứng minh rằng a+b+1 là số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10n + k
Vì :10n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k2+k+k = 9k2 + 2k
Ta có 444........4<n chữ số 4>=4k
Vậy a+b+1= 9k2 +2k+4k+1 = <3k>2 +2.3k.1 +12 = <3k +1>2
Vậy a+b+1 là một số chính phương
Cho a=11...11(2n chữ số 1); b = 44...4 (n chữ số 4). Chứng minh rằng: a+b+1 là số chính phương
Chứng minh số sau là số chính phương:
A= 111....11 - 222...2 (2n chữ số 1 và n chữ số 2)
B= 111.....1 + 444......44 + 1 (2n chữ số 1 và n chữ số 4)
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
Cho a=111...11 (2n chữ số)
b=444...44 (n chữ số)
Chứng minh rằng: a+b+1 là số chính phương
Đặt 111...11 (n chữ số 1) là k
Ta có: 111...11 (2n chữ số 1)=k.10^n+k
Vì: 10^n=9k+1
111...11 (2n chữ số 1)=k(9k+1)+k=9k^2+k+k=9k^2+2k
Ta có: 444...44 (n chữ số 4)=4k
vậy a+b+1=9k^2+2k+4k+1=(3k)^2+2.3k.1+1^2=(3k+1)^2
vậy a+b+1 là một số chính phương
Cho a = 11...11 ( 2n chữ số 1 );b = 44...4 ( n chữ số 4 ).
Chứng minh rằng : a+b+1 là số chính phương.
Chứng minh rằng A= 111...1112n chữ số 1 + 444..44n chữ số 4 + 1 là số chính phương
1) Cho:
A=111...11(2n chữ số 1)
B=444...44(n chữ số 4)
Chứng minh A+B+1 là số chính phương
2)Chứng minh rằng:
Nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số
Giúp mình nhanh nhé các bạn . :) :) :)
Chứng minh rằng các số sau là số chính phương:
M=111...1+44...4+1(2n chữ số 1;n chữ số 4)
Đặt 11...1(n chữ số 1)=a
Thì 9a+1=10n
\(\Rightarrow M=...\)
\(=a.\left(9a+1\right)+a+4a+1\)
\(=9a^2+6a+1=\left(3a+1\right)^2\)