Chứng minh rằng : A=1+3+5+7+...+n là số chính phương với n lẻ
Chứng minh rằng A = 1 + 3 + 5 + 7 ......... + n là số chính phương ( n lẻ )
Cho a,b là 2 số chính phương lẻ liên tiếp . Chứng minh rằng : (a - 1)(b - 1) chia hết cho 192
a/ Chứng minh rằng : Với mọi số tự nhiên n ∈ N, A = (n + 19931994) (1 + 19941993) chia hết cho 2
b/ Chứng minh rằng : Tích 2 số lẻ là 1 số lẻ. Từ đó ta biết : B = 20022001 - 20012000
Chứng minh rằng : A=1+3+5+7+...+(2n-1) là 1 số chính phương.
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
CHỨNG MINH RẰNG n^3+9n^2+23+15 CHIA HẾT CHO 18 VỚI n LÀ SỐ TỰ NHIÊN LẺ
\(n^3+9n^2+23n+15=n^3+n^2+8n^2+8n+15n+15\)
\(=n^2\left(n+1\right)+8n\left(n+1\right)+15\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+8n+15\right)=\left(n+1\right)\left(n^2+5n+3n+15\right)\)
\(=\left(n+1\right)\left[n\left(n+5\right)+3\left(n+5\right)\right]=\left(n+1\right)\left(n+5\right)\left(n+3\right)\)
Vì n là số tự nhiên lẻ nên \(\left(n+1\right)\left(n+3\right)\left(n+5\right)\)là tích ba số chẵn liên tiếp nên chia hết cho 48 ko phải 18 nhé :D
CMR: A=1+3+5+7+...+n là số chính phương ( n lẻ)
Chứng minh rằng: A=1+3+5+7+...+(2n-1) là 1 số chính phương
Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a+b+c+8 là số chính phương .
bài này mình làm trong vở ,mình đã chụp ảnh lại lời giải,bạn chịu khó mở trang của mình ra xem nha
Bạn tham khảo bài toán số 21 nha : https://olm.vn/hoi-dap/detail/11112433588.html
~ Học tốt ~
#)Giải :
Ta có :
\(a=111...11\)(2n chữ số 1)
\(b=111..11\)(n + 1 chữ số 1)
\(c=666...66\)(n chữ số 6)
\(\Rightarrow a+b+c+8=111...11+111...11+666...66+8\)
\(=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+\frac{6\left(10^n-1\right)}{9}+\frac{72}{9}\)
\(=\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
\(=\frac{\left(10^n\right)^2+10.10^n+6.10^n-6+70}{9}\)
\(=\frac{\left(10^n\right)^2+16.10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2\)
\(\Rightarrow a+b+c+8\)là số chính phương (đpcm)