\(\sqrt{4-3\sqrt{10-3xx}}=x-2\) Giải pt..
giải pt:
2+\(\sqrt{4-3\sqrt{10-x}}\)=\(\dfrac{x}{3}\)
ĐKXĐ: \(\dfrac{74}{9}\le x\le10\)
Đặt \(\sqrt{10-x}=t\Rightarrow0\le t\le\dfrac{4}{3}\) \(\Rightarrow x=10-t^2\)
Ta được:
\(2+\sqrt{4-3t}=\dfrac{10-t^2}{3}\)
\(\Leftrightarrow\sqrt{4-3t}-1=\dfrac{10-t^2}{3}-3\)
\(\Leftrightarrow\dfrac{3\left(1-t\right)}{\sqrt{4-3t}+1}=\dfrac{\left(1-t\right)\left(1+t\right)}{3}\)
\(\Rightarrow\left[{}\begin{matrix}t=1\Rightarrow x=9\\\dfrac{3}{\sqrt{4-3t}+1}=\dfrac{t+1}{3}\left(1\right)\end{matrix}\right.\)
Xét (1), do \(0\le t\le\dfrac{4}{3}\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{\sqrt{4-3t}+1}\ge1\\\dfrac{t+1}{3}\le\dfrac{\dfrac{4}{3}+1}{3}=\dfrac{7}{9}< 1\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=9\)
giải pt : \(3\sqrt{3x-2}+6\sqrt{x-1}=7x-10+4\sqrt{3x^2-5x+2}\)
ĐK: \(x\ge1\)
Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)
\(pt\Leftrightarrow3t=t^2-4\)
\(\Leftrightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)
\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)
\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)
\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
giải pt sau : \(\sqrt{4-3\sqrt{10-3x}}=x-2\)
ĐKXĐ:
$\left\{\begin{matrix}
10-3x\geq 0\\x-2\geq 0
\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}
x\leq \frac{10}{3}\\x\geq 2
\end{matrix}\right.$
Phương trình tương đương:
$\sqrt{4-3\sqrt{10-3x}}=x-2$
$\Leftrightarrow 4-3\sqrt{10-3x}=(x-2)^2$ (1)
Đặt $a-2=-\sqrt{10-3x}$ (2)
Từ (1) và (2) ta có hệ pt:
$\left\{\begin{matrix}
4-3(a-2)=(x-2)^2\\ 10-3x=(a-2)^2
\end{matrix}\right.$
$\Leftrightarrow
\left\{\begin{matrix}
10-3a=(x-2)^2\\10-3x=(a-2)^2
\end{matrix}\right.$
Giải hệ ta được nghiệm x = a suy ra x = 3.
Giải PT: \(\sqrt{4-3\sqrt{10-3x}}=x-2\)
\(\sqrt{4-3\sqrt{10-3x}}=x-2\)
\(\Leftrightarrow4-3\sqrt{10-3x}=\left(x-2\right)^2\)
\(\Leftrightarrow-3\sqrt{10-3x}=\left(x-2\right)^2-4\)
\(\Leftrightarrow9\left(10-3x\right)=x^2\left(x-4\right)^2\)
\(\Leftrightarrow90-27x=x^4-8x^3+16x^2\)
\(\Leftrightarrow90-27x-x^4+8x^3-16x^2=0\)
đến đây tự làm mình hơi lười
Giải pt bằng cách đặt ẩn phụ\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
gợi ý: đặt t=\(\sqrt{2+x}-2\sqrt{2-x}\)
Hãy tích cho tui đi
vì ai tích cho tui thì người đó thông minh
ĐK: \(-2\le x\le2\)
\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
<=> \(3\left(\sqrt{2+x}-2\sqrt{2-x}\right)=10-3x-4\sqrt{4-x^2}\)
Đặt: \(t=\sqrt{2+x}-2\sqrt{2-x}\) => \(t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó pt trở thành:
\(3t=t^2\)
<=> \(t^2-3t=0\)
<=> \(t\left(t-3\right)=0\)
<=> \(\orbr{\begin{cases}t=0\\t=3\end{cases}}\)
đến đây bn tự giải nốt nhé
Giải pt
\(2\sqrt{x^2+2}=5\sqrt{x^3+1}\)
\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
Điều kiện:\(-2\le x\le2\)
Ta có: \(10-3x=\left(2+x\right)+4\left(2-x\right)\)
Đặt \(a=\sqrt{2+x}\ge0\)
\(b=\sqrt{2-x}\ge0\)
Pt trở thành:\(3a-6b+4ab=a^2+4b^2\)
Chuyển vế cùng 1 vế sau đó nhóm lại và đặt nhân tử chung
\(\left(a^2-2ab\right)-\left(2ab-4b^2\right)-\left(3a-6b\right)=0\)
\(a\left(a-2b\right)-2b\left(a-2b\right)-3\left(a-2b\right)=0\)
\(\left(a-2b\right)\left(a-2b-3\right)=0\)
Với a-2b=0\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}=0\)
\(\Rightarrow x=\frac{6}{5}\left(tm\right)\)
Với a-2b-3=0\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}-3=0\)
=> vô nghiệm
Vậy pt trên có nghiệm là \(x=\frac{6}{5}\)
Câu 1:
Ta có 2 vế luôn dương nên bình phương 2 vế được:
\(2x^2+4=5x^3+5\)
\(5x^3-2x^2-1=0\)
<=> x = 0,7528596306
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
1. Giải pt:
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
2. Giải pt:
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
\(\sqrt{4-3\sqrt{10-3x}}=x-2\)
GIẢI PT TRÊN