Tìm các số x, y, t biết
x^2+14y^2+t^2+2xy+6yt-12y+9=0
Bài 1 Tìm các số x:y:z biết :\(x^2+14y^2+t^2+2xy+6yt-12y+9=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(t^2+6yt+9y^2\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(t+3y\right)^2+\left(2y-3\right)^2=0\)
Dấu '=' xảy ra khi y=3/2; x=-3/2; t=-3y=-9/2
Bài 1 Tìm các số x:y:z biết :x2+14y2+t2+2xy+6yt−12y+9=0
\(x^2+14y^2+t^2+2xy+6yt-12y+9=0\)
\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(t^2+6yt+9y^2\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(t+3y\right)^2+\left(2y-3\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\t+3y=0\\2y-3=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=-1,5\\t=-4,5\\y=1,5\end{cases}}\)
tìm x,y biết 2xy+x-14y=2
\(2xy+x-14y=2\)
\(\Leftrightarrow x\left(2y+1\right)-7\left(2y+1\right)=-5\)
\(\Leftrightarrow\left(x-7\right)\left(2y+1\right)=-5\)
Xét từng trường hợp sẽ ra
2xy+x-14y=2
=> 2xy+x-14y-7=2-7
=>(2xy+x)-(14y+7)=-5
=>x(2y+1)-7(2y+1)=-5
=>(2y+1)(x-7)=-5
=>(2y+1)(x-7)=-1.5=1.(-5)
do đó :
Nếu 2y+1=-1 =>2y=-2 =>y=-1
thì x-7=5 =>x=12
Nếu 2y+1=1 =>2y=0 =>y=0
thì x-7=-5 =>x=2
tìm GTNN, GTLN của S=x+y biết x^2 + 3y^2 + 2xy - 10x - 14y + 18 = 0
Làm nốt phần còn lại của bạn Thắng
(x + y - 5)2 + 2(y - 1)2 - 9 = 0
<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)
\(\Leftrightarrow\left(S-5\right)^2\le9\)
\(\Leftrightarrow-3\le S-5\le3\)
\(\Leftrightarrow2\le S\le8\)
Vậy GTNN là 2 đạt được khi x = y = 1
GTLN là 8 đạt được khi (x, y) = (7, 1)
\(x^2+3y^2+2xy-10x-14y+18\)
\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)
\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)
....
x=7;y=±1 và x=y=1 và x=1; y=3 và x=y=3 và x=5;y=-1
tìm x,y biết : x^2 + 2y^2+ 2xy+ 10x + 12y+ 26 = 0
<=> [ (x^2+2xy+y^2)+ 2.(x+y).5 +25 ] + (y^2+2y+1)=0
<=> (x+y+5)^2 + (y+1)^2 = 0
<=> x+y+5 = 0 và y+1 = 0
<=> x=-4 và y=-1
Ta có: x2+2y2+2xy+10x+12y+26=0
=> (x2+2xy+y2)+(10x+10y)+25+(y2+2y+1)=0
=> (x+y)2+10(x+y)+25+(y2+2y+1)=0
=> (x+y+5)2+(y+1)2=0
=> (x+y+5)2=(y+1)2=0
=> x+y+5=y+1=0
(+) y+1=0=> y=-1
(+) x+y+5=0 mà y=-1=> x-1+5=0
=> x+4=0=> x=-4
Vậy (x,y)=(-4;-1)
Tìm GTNN của các đa thức sau:
A= 5x2+2y2+2xy-26x-16y+54
B= 2x2+9y2-6xy-6x-12y+2014
C= 4x2+3y2-2xy-10x-14y+30
D= x2+5y2-4xy+6x-14y+15
E= 2x2+y2-2xy-2x+2y+12
tìm GTLN và GTNN của M=x+y biết x2+3y2+2xy-10x-14y+18=0
tìm GTLN và GTNN của M=x+y biết x2+3y2+2xy-10x-14y+18=0
Ta có :
\(x^2+3y^2+2xy-10x-14y+18=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)
\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)
Vì \(2\left(y-1\right)^2\ge0\forall y\)nên \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)
\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)
\(Min_M=2\)khi \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)\(Max_M=8\)khi\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)Tìm x a.x^3-9x =0 b.x^2+4x+4-y^2 c. x^2-2xy+7x-14y
a ) x3 - 9x=0
<=> x (x2 - 3 )= 0
<=> x(x+3)(x-3)
<=> x=0
hoặc x=0-3=-3
hoặc x=0+3=3