GT |
△ABC có 3 góc nhọn ( AB <AC). AH ⊥ BC ( H ∈ BC ) ; M nằm giữa A và H. BM giao AC tại D |
KL
|
a, Chứng minh BM < CM. b, Chứng minh DM < DH
|
Cho tam giác ABC có 3 góc nhọn , kẻ BD vuông góc AC tại D , CE vuông góc AB tại E
1. C/m AB > BD
2. C/m AC >CE
3. C/m AB + AC > BD + CE
cho tam giác ABC có 3 góc nhọn trực tâm H
Chứng minh : 2(AB+AC+BC) >3(HA+HB+HC)
Từ trực tâm H kẻ HD//AB, HE//AC (E thuộc AB, D thuộc AC)
HE//AC. Mà BH vuông góc với AC => BH vuông góc với HE (Quan hệ song song vuông góc)
=> HB<EB (Quan hệ đường xiên, đường vuông góc) (1)
HE//AD, HD//AE => HE=AD, HD=AE (Tính chất đoạn chắn)
Ta có: HA<AD+HD (BĐT tam giác). Thay HD=AE vào biểu thức bên: HA<AD+AE (2)
Tương tự: HD//AB, CH vuông góc với AB => CH vuông góc với HD
=> HC<DC (Đường xiên, đường vuông góc) (3)
Từ (1), (2) và (3) => HA+HB+HC<EB+AD+AE+DC => HA+HB+HC<(EB+AE)+(AD+DC)
=> HA+HB+HC<AB+AC. (4)
Tương tự bạn giải ra: HA+HB+HC<AB+BC (5)
HA+HB+HC<AC+BC (6)
Từ (4),(5) và (6) => 3(HA+HB+HC)<(AB+AC)+(AB+BC)+(AC+BC) (Cộng vế với vế)
=> 3(HA+HB+HC)<2AB+2AC+2BC => 3(HA+HB+HC)<2(AB+AC+BC)
hay 2(AB+AC+BC)>3(HA+HB+HC) (đpcm)
**** nha!!!
Vì AB+AC+BC > HA+HB+HC
mà 2(AB+AC+BC) >4(HA+HB+HC)
=> 2(AB+AC+BC)>3(HA+HB+HC)
Cho tam giác ABC có 3 góc nhọn .Kẻ AH vuông góc với BC tại H.
1.CHỨNG MINH AC>AH
2.CHỨNG MINH AB>AH
1. Xét tam giác AHC có : AHC = 90 độ
=> AC > AH ( AC là cạnh huyền )
2. Xét tam giác AHB có : AHB = 90 độ
=> AB > AH ( AB là cạnh huyền )
cho tam giác ABC có 3 góc nhọn và AB<AC.Kẻ BD vuông góc với AC và CE vuông góc với AB.BD cắt CE tại I.Chứng minh CE>BD
Cho tam giác ABC có 3 góc nhọn , H là trực tâm của tam giác . Chứng minh rằng : AB+AC > AH + BH + CH . Từ đó suy ra chu vi tam giác ABC > 3/2 ( AH + BH + CH )
Help
Tham khảo nha .
Vẽ HD // AC . và HE // AB
Ta có : \(HD//AC\)
và \(BH\perp AC\)( vì H là trực tâm của tam giác ABC )
\(\Rightarrow HD\perp BH\)
\(\Rightarrow DB>BH\)
( Cạnh đối diện với góc vuông)
Chứng minh tương tự như trên ta có :
\(EC//DH\)
\(\Rightarrow CH\perp AB\)
\(\Rightarrow CH\perp CE\)
\(\Rightarrow EC>CH\)(Cạnh đối góc vuông)
Mặt khác ta có :
\(HD//AE\)
\(HE//DA\)
\(\Rightarrow\)Tứ giác AEHD là hình bình hành
\(\Rightarrow AD=HE\)
Xét tam giác AEH có :
\(HE+AE>AH\)
\(\Rightarrow AD+AE>AH\)
\(\Leftrightarrow AB+AC=AD+DB+AE+EC\)
\(=\left(AD+AE\right)+DB+EC>AH+BH+CH\)
Chứng minh tương tự ta có :
\(AB+BC>AH+BH+CH\)
\(AC+BC>AH+BH+CH\)
Do đó : \(2\left(AB+BC+AC\right)>3\left(AH+BH+CH\right)\)
\(\Rightarrow AB+BC+AC>\frac{3}{2}\left(AH+BH+CH\right)\)(đpcm)
Cho tam giác ABC nhọn, có AD vuông góc với BC, BE vuông góc với AC,
a) Biết góc ABC>ACB, chứng minh HC>HB
b) Kẻ HM//AB, M thuộc AC, HN//AC, N thuộc AB. Chứng minh AN=HM;AM=HN( H là giao điểm của AD và BE
c) Chứng minh AB+AC>2AD và HA+HB+HC<2/3*(AB+AC+BC)
1. cho tam giác ABC có góc B,C nhọn. Vẽ AH vuông góc với BC tại H. cm: AB+AC > 2AH
2. cho tam giác ABC nhọn. Vẽ BC vuông góc với AC tại D, vẽ CE vuông góc với AB tại E. cm: BC+CE < AB+AC
giải giúp em với!!!! "_" "_" "_"
Cho tam giác ABC nhọn có AD và BE là hai đường cao cắt nhau tại H.
a, Cho góc ABC >góc ACB. c/m HC>HB
b,Vẽ HF vuông AB tại F . c/m 3 điểm C,H,F thẳng hàng .
c, c/m AB +AC> 2AD
d,c/m HA +HB+AC < 2/3< AB+ AC+BC
cách giải bài toán : cho tam giác abc nhọn có AB > AC .Đường cao AH a)chứng minh HB>HC b)chứng minh góc C> góc B c) So sánh góc BAH và góc CAH
1. cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D. Vẽ AH vuông góc với BC tại H. So sánh HC và HD
3. cho tam giác ABC có góc B,C nhọn. Vẽ AH vuông góc với BC tại H. cm: AB+AC > 2AH
4. cho tam giác ABC nhọn. Vẽ BC vuông góc với AC tại D, vẽ CE vuông góc với AB tại E. cm: BC+CE < AB+AC
giải giúp mik với!!!! -_- "_" "_"