Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Hà Nguyễn
Xem chi tiết
Nguyễn Phúc Cường
Xem chi tiết
Đoàn Trí Tiến
13 tháng 5 2016 lúc 20:58

x=0 biểu thức có gt là 8

Hoàng Phúc
13 tháng 5 2016 lúc 21:13

A=x2+5x+8

A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)

\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)

\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)

\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

=>GTNN của A là 7/4

Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

Dương Nguyễn Thuỳ
Xem chi tiết
nguyễn tuấn thảo
30 tháng 12 2018 lúc 15:15

Để A=|x|+|8-x| nhỏ nhất thì A<=|x+8-x|

A<=8

Vậy A nhỏ nhất khi A=8

NTN vlogs
30 tháng 12 2018 lúc 15:31

Để A=|x|+|8-x| nhỏ nhất thì A<=|x+8-x|

A<=8

Vậy A nhỏ nhất khi A=8

Đại Ma Vương
Xem chi tiết
Nguyễn Trần Thành Đạt
26 tháng 7 2016 lúc 22:25

4

4

4

4

4

Trương Việt Hoàng
27 tháng 7 2016 lúc 7:38

\(x^2-6x+y^2-2y+8=x^2-6x+9+y^2-2y+1-2\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-1\right)^2-2\)\(\ge0+0-2=-2\)

Dấu bằng xảy ra khi x=3 y=1.Vậy giá trị nhỏ nhất của biểu thức là -2 với x=3 và y =1

Trang Nguyễn Ngọc Kiều
Xem chi tiết
Quỳnh Anh
19 tháng 2 2021 lúc 12:49

Trả lời:

Bài 1: a,

\(A=\left|x-1\right|+3\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)

Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)

Vậy GTNN của A = 3 khi x = 1

\(B=\left|x-7\right|-4\)

Vì \(\left|x-7\right|\ge0\forall x\)

  \(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)

Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)

Vậy GTNN của B = -4 khi x = 7

b, \(C=-\left|x-3\right|+2\)

Vì \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)

Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)

Vậy GTLN của C = 2 khi x = 3

Khách vãng lai đã xóa
Bùi Hải Hà My
Xem chi tiết
Lai nhu Phong
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Không Tên
3 tháng 1 2018 lúc 21:17

\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+2012\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2012\)

Đặt  \(x^2-5x+4=t\) ta có:

            \(A=t\left(t+2\right)+2012\)

           \(=t^2+2t+1+2011\)

           \(=\left(t+1\right)^2+2011\)  \(\ge2011\)   \(\forall x\)

Dấu  "="   xảy ra \(\Leftrightarrow\)\(t+1=0\)

                          \(\Leftrightarrow\)\(x^2-5x+4+1=0\)

       MK lm đc có vậy thôi. bn tham khảo nhé

Min A = 2011

Nguyễn Xuân Anh
4 tháng 1 2018 lúc 0:03

Chỗ đặt của Giang mk nghĩ nên đặt t = x2 - 5x + 5 thì hơn xong áp dụng hằng đẳng thức số 3 sẽ dễ hơn! 

Nguyễn Xuân Anh
4 tháng 1 2018 lúc 0:15

x = x=5/2-căn bậc hai(5)/2và  x=căn bậc hai(5)/2+5/2

Trần Dương An
Xem chi tiết
ST
15 tháng 8 2018 lúc 12:22

Đặt x+7=y

=>\(A=\left(y+1\right)^4+\left(y-1\right)^4=\left(y^4+4y^3+6y^2+4y+1\right)+\left(y^4-4y^3+6y^2-4y+1\right)=2y^4+12y^2+2\ge2\)

Dấu "=" xảy ra <=> y = 0 <=> x = -7

Vậy MinA=2 khi x=-7