Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phong Trần
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2023 lúc 0:01

1.

\(cos\left(\widehat{\overrightarrow{u};\overrightarrow{v}}\right)=\dfrac{\overrightarrow{u}.\overrightarrow{v}}{\left|\overrightarrow{u}\right|.\left|\overrightarrow{v}\right|}=\dfrac{10}{10.\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow\left(\widehat{\overrightarrow{u};\overrightarrow{v}}\right)=45^0\)

2.

a. 

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\) (1)

Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=1\Rightarrow\widehat{SBA}=45^0\)

b.

Từ (1) \(\Rightarrow BC\perp AM\)

Mà \(AM\perp SB\left(gt\right)\) \(\Rightarrow AM\perp\left(SBC\right)\) (2)

\(\Rightarrow AM\perp MN\Rightarrow\Delta AMN\) vuông tại M

Từ (2) \(\Rightarrow AM\perp SC\), mà \(SC\perp AN\left(gt\right)\)

\(\Rightarrow SC\perp\left(AMN\right)\) (3)

Lại có \(SA\perp\left(ABC\right)\) theo giả thiết

\(\Rightarrow\) Góc giữa (AMN) và (ABC) bằng góc giữa SA và SC hay là góc \(\widehat{ASC}\)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{ASC}=\dfrac{AC}{SA}=\sqrt{2}\Rightarrow\widehat{ASC}\approx54^044'\)

Từ (3) \(\Rightarrow AN\) là hình chiếu vuông góc của AC lên (AMN)

\(\Rightarrow\widehat{CAN}\) là góc giữa AC và (AMN)

Mà \(\widehat{CAN}=\widehat{ASC}\) (cùng phụ \(\widehat{ACS}\)\(\Rightarrow\widehat{CAN}=...\)

c.

\(\left\{{}\begin{matrix}IC=\dfrac{1}{2}AC\left(gt\right)\\AI\cap\left(SBC\right)=C\end{matrix}\right.\) \(\Rightarrow d\left(I;\left(SBC\right)\right)=\dfrac{1}{2}d\left(A;\left(SBC\right)\right)\)

Mà từ (2) ta có \(AM\perp\left(SBC\right)\Rightarrow AM=d\left(A;\left(SBC\right)\right)\)

\(SA=AB\left(gt\right)\Rightarrow\Delta SAB\) vuông cân tại A 

\(\Rightarrow AM=\dfrac{1}{2}SB=\dfrac{a\sqrt{2}}{2}\Rightarrow d\left(I;\left(SBC\right)\right)=\dfrac{1}{2}AM=\dfrac{a\sqrt{2}}{4}\)

Nguyễn Việt Lâm
8 tháng 5 2023 lúc 0:02

Hình vẽ bài 2:

loading...

Nguyễn Việt Lâm
8 tháng 5 2023 lúc 0:17

3.

a.

Do \(SA=SB=SC=SD\Rightarrow\) hình chiếu vuông góc của S lên (ABCD) trùng tâm O của hình vuông

Hay \(SO\perp\left(ABCD\right)\)

\(\Rightarrow SO\perp BD\)

Lại có \(AC\perp BD\) (hai đường chéo hình vuông)

\(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC\)

Mà MN là đường trung bình tam giác SBD \(\Rightarrow MN||BD\)

\(\Rightarrow MN\perp SC\Rightarrow\left(\widehat{MN;SC}\right)=90^0\)

b.

\(AC=\sqrt{AB^2+BC^2}=2a\sqrt{2}\)

\(SA=SC=2a\Rightarrow SA^2+SC^2=8a^2=AC^2\)

\(\Rightarrow\Delta SAC\) vuông tại S (pitago đảo)

\(\Rightarrow SA\perp SC\)

c.

\(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)\)

Lại có \(\left\{{}\begin{matrix}AC=2OC\\AO\cap\left(SCD\right)=C\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)\)

Từ O kẻ \(OE\perp CD\), từ \(O\) kẻ \(OF\perp SE\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

\(OE=\dfrac{1}{2}BC=a\) (đường trung bình)

\(\Delta SAC\) vuông tại S (theo cm câu b) \(\Rightarrow SO=\dfrac{1}{2}AC=a\sqrt{2}\) (trung tuyến ứng với cạnh huyền)

Hệ thức lượng:

\(OF=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{6}}{3}\)

\(\Rightarrow d\left(A;\left(SCD\right)\right)=2OF=\dfrac{2a\sqrt{6}}{3}\)

tranthithao tran
Xem chi tiết
Quỳnh Giang Bùi
10 tháng 10 2017 lúc 21:14

cái này là j z

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:47

a) Tọa độ của vectơ \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w \) là: \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w  = \left( { - 2 + 0 + \left( { - 2} \right);0 + 6 + 3} \right) = \left( { - 4;9} \right)\)

b) Ta có: \(\overrightarrow w  + \overrightarrow u  = \overrightarrow v  \Leftrightarrow \overrightarrow w  = \overrightarrow v  - \overrightarrow u \) nên \(\overrightarrow w  = \left( {0 - \sqrt 3 ; - \sqrt 7  - 0} \right) = \left( { - \sqrt 3 ; - \sqrt 7 } \right)\)

Thầy Cao Đô
Xem chi tiết
trần phi yến
Xem chi tiết
Akai Haruma
29 tháng 3 2020 lúc 16:21

Lời giải:

a)

\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}=(1-2, 2-2,3-(-1))=(-1,0,4)\)

b)

\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}+2\overrightarrow{w}=(1-2+2.4,2-2+2.0; 3-(-1)+2(-4))\)

\(=(7, 0, -4)\)

c)

\(\overrightarrow{x}=2\overrightarrow{u}+4\overrightarrow{v}-\overrightarrow{w}=(2.1+4.2-4, 2.2+4.2-0, 2.3+4.(-1)-(-4))\)

\(=(6,12,6)\)

d)

\(2\overrightarrow{x}=3\overrightarrow{u}+\overrightarrow{w}=3(1,2,3)+(4,0,-4)=(3.1+4, 3.2+0,3.3+(-4))\)

\(=(7,6,5)\Rightarrow \overrightarrow{x}=(\frac{7}{2}, 3, \frac{5}{2})\)

e)

\(3\overrightarrow{x}=-2\overrightarrow{u}-\overrightarrow{v}+\overrightarrow{w}=-2(1,2,3)-(2,2,-1)+(4,0,-4)\)

\(=(-2,-4,-6)-(2,2,-1)+(4,0,-4)=(-2-2+4,-4-2+0,-6-(-1)+(-4))\)

\(=(0,-6,-9)\Rightarrow \overrightarrow{x}=(0,-2,-3)\)

Khách vãng lai đã xóa
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 6 2021 lúc 19:06

Không hiểu câu hỏi số 2 của em

Ở đây có 2 pt đường tròn khác nhau, vậy (C) là cái nào trong 2 cái trên? Hoặc đề yêu cầu tìm ảnh của cả 2 đường tròn?

Nguyễn Việt Lâm
23 tháng 6 2021 lúc 19:28

1.

a/ Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow x-y+3=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến vecto \(\overrightarrow{v}\Rightarrow M'\in d'\)

Theo công thức tọa độ phép tịnh tiến:

\(\left\{{}\begin{matrix}x'=x+2\\y'=y-1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'+1\end{matrix}\right.\)

Thế vào (1)  \(\Rightarrow\left(x'-2\right)-\left(y'+1\right)+3=0\)

\(\Leftrightarrow x'-y'=0\)

Vậy pt d' có dạng: \(x-y=0\)

b/ Tương tự như trên, vẫn gọi \(M'\left(x';y'\right)\) là điểm thuộc d' và \(M\left(x;y\right)\) là ảnh của M' qua phép tịnh tiến

\(\Rightarrow M\in d\Rightarrow x-y+3=0\) (2)

Theo công thức tọa độ phép tịnh tiến:

\(\left\{{}\begin{matrix}x=x'+2\\y=y'-1\end{matrix}\right.\) thế vào (2):

\(x'+2-\left(y'-1\right)+3=0\Leftrightarrow x'-y'+6=0\)

Vậy pt d' có dạng: \(x-y+6=0\)

Nguyễn Việt Lâm
23 tháng 6 2021 lúc 19:32

2.

a. Đường tròn (C) có tâm \(I\left(1;-3\right)\) và bán kính \(R=\sqrt{2}\)

Gọi \(\left(C'\right)\) có tâm \(I'\left(x';y'\right)\) bán kính \(R'\) là ảnh của (C) qua phép tịnh tiến 

\(\Rightarrow R'=R=\sqrt{2}\) và I' là ảnh của I qua phép tịnh tiến \(\overrightarrow{v}\)

\(\Rightarrow\left\{{}\begin{matrix}x'=x_I+3=4\\y'=y_I+2=-1\end{matrix}\right.\)

Phương trình (C'): \(\left(x-4\right)^2+\left(y+1\right)^2=2\)

b. Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)

...trình bày tương tự như trên:

\(\left\{{}\begin{matrix}x'=x_I+3=5\\y'=y_I+2=1\end{matrix}\right.\)

Phương trình (C'): \(\left(x-5\right)^2+\left(y-1\right)^2=4\)

minh hy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 6 2022 lúc 0:19

CHọn A

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 20:35

a) 

Ta có: \(\overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\)

\( \Rightarrow \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1 \Leftrightarrow \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o}\)

Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) cùng hướng.

b)

Ta có: \(\overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) =- \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right|\)

\( \Rightarrow \cos \left( {\overrightarrow u ,\;\overrightarrow v } \right) =  - 1 \Leftrightarrow \left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o}\)

Nói cách khác: \(\overrightarrow u ,\;\overrightarrow v \) ngược hướng.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 20:33

a) Ta có: \(\overrightarrow u  = ({x_1};{y_1}),\;\overrightarrow v  = ({x_2};{y_2}),\;\overrightarrow w  = ({x_3};{y_3}).\)

\(\begin{array}{l} \Rightarrow \overrightarrow v  + \overrightarrow w  = ({x_2};{y_2}) + ({x_3};{y_3}) = \left( {{x_2} + {x_3};{y_2} + {y_3}} \right)\\ \Rightarrow \overrightarrow u .\left( {\overrightarrow v  + \overrightarrow w } \right) = {x_1}.\left( {{x_2} + {x_3}} \right) + {y_1}.\left( {{y_2} + {y_3}} \right)\end{array}\)

Và: \(\;\overrightarrow u .\overrightarrow v  + \overrightarrow u .\overrightarrow w  = \left( {{x_1}.{x_2} + {y_1}.{y_2}} \right) + \left( {{x_1}.{x_3} + {y_1}.{y_3}} \right)\)\( = {x_1}.{x_2} + {y_1}.{y_2} + {x_1}.{x_3} + {y_1}.{y_3}.\)

b) Vì \({x_1}.{x_2} + {y_1}.{y_2} + {x_1}.{x_3} + {y_1}.{y_3}\)\( = \left( {{x_1}.{x_2} + {x_1}.{x_3}} \right) + \left( {{y_1}.{y_2} + {y_1}.{y_3}} \right)\)\( = {x_1}.\left( {{x_2} + {x_3}} \right) + {y_1}.\left( {{y_2} + {y_3}} \right)\)

Nên \(\overrightarrow u .\left( {\overrightarrow v  + \overrightarrow w } \right) = \;\overrightarrow u .\overrightarrow v  + \overrightarrow u .\overrightarrow w \)

c) Ta có: \(\overrightarrow u  = ({x_1};{y_1}),\;\overrightarrow v  = ({x_2};{y_2})\)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow u .\overrightarrow v  = {x_1}.{x_2} + {y_1}.{y_2}\\\overrightarrow v .\overrightarrow u  = {x_2}.{x_1} + {y_2}.{y_1}\end{array} \right.\)\( \Leftrightarrow \;\overrightarrow u .\overrightarrow v  = \overrightarrow v .\overrightarrow u \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:41

a) Để \(\overrightarrow u  = \overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right.\) thì \(\overrightarrow u  = \overrightarrow v \)

b) \(\overrightarrow x  = \overrightarrow y  \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 2\end{array} \right.\)

Vậy \(\left\{ \begin{array}{l}a = 1\\b =  - 2\end{array} \right.\) thì \(\overrightarrow x  = \overrightarrow y \)