Tìm GTNN CỦA P=\(|x^2-x+1|+|x^2-x+2|\)
Tìm GTNN của x^2+x+1
1.Tìm x,y biết:
x/4=y/5 và x^2+y^2=9
2.Tìm GTNN của F=(y^2+3)+/x+y-1/+6
Tìm GTNN Của x^2+3/x+1
\(x^2+3x+1\)
=\(\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{5}{4}\)
=\(\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\)
Ta có:\(\left(x+\dfrac{3}{2}\right)^2\ge0\) Với mọi x
=>\(\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)
Dấu "=" xảy ra <=>\(\left(x+\dfrac{3}{2}\right)^2=0\)
<=>\(x+\dfrac{3}{2}=0\)
<=>\(x=\dfrac{-3}{2}\)
\(\dfrac{x^2+3}{x+1}=\dfrac{x^2-1+4}{x+1}=x-1+\dfrac{4}{x+1}\)
\(=x+1+\dfrac{4}{x+1}-2\ge2\cdot\sqrt{4}-2=2\)
Dấu '=' xảy ra khi \(\left(x+1\right)^2=4\)
=>x+1=2 hoặc x+1=-2
=>x=1 hoặc x=-3
Cho x > 0. Tìm GTNN của C = x + 1/(4x) + x/((2x+1)^2)
\(x>0\)
\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\)
-Ta đặt \(A=T=4x^2+1;B=4x\) thì ta có:
\(A\ge B\Rightarrow A+T\ge B+T\) (do \(T>0\))\(\Rightarrow\dfrac{A+T}{B+T}\ge1\)
-Do đó: \(C=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\ge\text{}\dfrac{4x^2+1+4x^2+1}{4x+4x^2+1}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{2\left(4x^2+1\right)}{\left(2x+1\right)^2}+\dfrac{8x}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=\dfrac{2\left(2x+1\right)^2}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=2-\dfrac{7x}{\left(2x+1\right)^2}\)
-Áp dụng BĐT AM-GM ta có:
\(C\ge2-\dfrac{7x}{\left(2x+1\right)^2}\ge2-\dfrac{7x}{4.2x}=2-\dfrac{7}{8}=\dfrac{9}{8}\)
\(C=\dfrac{9}{8}\Leftrightarrow x=\dfrac{1}{2}\)
-Vậy \(C_{min}=\dfrac{9}{8}\)
Cho x > 0. Tìm GTNN của C = x + 1/(4x) + x/((2x+1)^2)
Tìm GTNN của (2x+1)^2+(x-1)^2
\(\left(2x+1\right)^2+\left(x-1\right)^2\)
\(=4x^2+4x+1+x^2-2x+1\)
\(=5x^2+2x+2\)
\(=\left(\sqrt{5}.x\right)^2+2.\sqrt{5}.x.\frac{\sqrt{5}}{5}+\left(\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\)
\(=\left(\sqrt{5}x+\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\)
Ta có
\(\left(\sqrt{5}.x+\frac{\sqrt{5}}{5}\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{5}.x+\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\)
Dấu " = " xảy ra khi \(\sqrt{5}.x+\frac{\sqrt{5}}{5}=0\Leftrightarrow x=-\frac{1}{5}\)
Vậy biểu thức đạt giá trị nhỏ nhất là \(\frac{9}{5}\) khi x=\(-\frac{1}{5}\)
Tìm GTNN của (2x+1)^2+(x-1)^2
\(A=\left(2x+1\right)^2+\left(x-1\right)^2\)
Có: \(\left(2x+1\right)^2+\left(x-1\right)^2\ge0\)
Dấu = xảy ra khi: \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}}\) ( k hợp lý => loại )
Ta xét: \(2x+1=0\Rightarrow A=\frac{1}{4}\)
\(x-1=0\Rightarrow A=16\)
Vì: \(\frac{1}{4}< 16\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_A=\frac{1}{4}\) tại \(x=-\frac{1}{2}\)
tìm GTNN của A khi x>1
A= (x^2+x)/(x^2-2x+1); ( ( x+1)/x + 1/x+1 + (2-x^2)/(x^2-x) )
Cho hai số thực x và y thỏa mãn y-x=1 tìm gtnn của A=x^2+y^2
\(y-x=1\Rightarrow x=y-1\)
\(\Rightarrow x^2+y^2=\left(y-1\right)^2+y^2\)
\(=y^2-2y+1+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{2}\right)\)
\(=2\left(y^2-2y\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu"=" xảy ra khi \(2\left(y-\frac{1}{2}\right)^2=0\Rightarrow y=\frac{1}{2}\)
Vì \(y-x=1\)nên
\(\Rightarrow\frac{1}{2}-x=1\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_A=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{1}{2}\)