tim x sao cho B min:
B = \(\frac{x^2-2x+2011}{x^2}\)voi x>0
Tim x:
a) x^2 + 2x = 0
b) (x - 3) + 2x^2 - 6x = 0
c) (x^2 + 1). (x + 2011) = 0
d) (x - 2)^2 = 1
d) (x - 2)^2 = 1
= x = 2 + 1 = 3
c) (x^2 + 1). (x + 2011) = 0
Tim x:
a) x^2 + 2x = 0
= \(x^2+2x=0\)
= \(x^2=0:2=0\)
b) (x - 3) + 2x^2 - 6x = 0
Rút gọn thừa số chung :
\(2x^2-5x-3=0\)
x = \(\frac{-1}{2}\)x = 3
=\(x^2=0\)
=> x = 0
Bạn Nguyễn Phương Trung làm đúng rồi, các bn tk cho bn ấy nha !
Bai 1:a)Tim x biet\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2009}{2011}\)
b)\(\left(x-1\right)\times f\left(x\right)=\left(x+4\right)\times f\left(x\right)\)voi moi x
Bai 2;Tim x;y;z biet a)\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\) b)\(\frac{2x+1}{5}=\frac{3y-z}{7}=\frac{2x+3y-1}{6x}\)
cho 2 da thuc :f(x)=3x^3 - 2x^2 + x + 5
g(x)=3x^2 + ax + b
tim a,b sao cho f(x)=(x-1)*g(x)
moi nguoi giai giup em voi
\(f\left(x\right)=\left(x-1\right).g\left(x\right)\)
\(\Rightarrow3x^3-2x^2+x+5=\left(x-1\right)\left(3x^2+ax+b\right)\)
\(\Rightarrow3x^3-2x^2+x+5=3x^3+ax^2+bx-3x^2-ax-b\)
\(\Rightarrow-2x^2+x+5=x^2\left(a-3\right)+x\left(b-a\right)-b\)
-Bạn kiểm tra lại đề.
Tim GTLN : E=\(\frac{x^2+xy+y^2}{x^2-xy+y^2}\)voi x,y>0
Tim GTLN : M=\(\frac{x}{\left(x+1995\right)^2}\)voi x>0
Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!
Cho B= \(\frac{x-2\sqrt{x}+4}{\sqrt{x}}\)(voi x>0)
Tim min B
Ta có: \(B=\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}+\frac{4}{\sqrt{x}}=\sqrt{x}-2+\frac{4}{\sqrt{x}}=\left(\sqrt[4]{x}\right)^2-2.\sqrt[4]{x}.\frac{2}{\sqrt[4]{x}}+\left(\frac{2}{\sqrt[4]{x}}\right)^2+2\)
\(=\left(\sqrt[4]{x}-\frac{2}{\sqrt[4]{x}}\right)^2+2\ge2\)
Vậy Min B = 2 khi x = 4.
Chúc em học tốt :)
Tim x : x^3-x^2-x+1=0
Chung minh 2x-2x^2-1<0 voi moi x
Giup vs
Bài 1:
\(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy x = 1 hoặc x = -1
Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)
\(\Rightarrowđpcm\)
Tim tap hop cac so nguyen x sao cho
A, |2x - 4| + 2x - 4 = 0
B , |x + 5|- ( x +5) = 0
C, 2 - x = - |2- x|
a: =>|2x-4|=-2x+4
=>2x-4<=0
=>x<=2
b: =>|x+5|=x+5
=>x+5>=0
hay x>=-5
c: =>|x-2|=x-2
=>x-2>=0
hay x>=2
tìm x>0 để \(B=\frac{x^2-2x+2011}{x^2}\) đạt giá trị nhỏ nhất
Ta có \(A=\frac{x^2-2x+2011}{x^2}\)
\(=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)
\(=1-\frac{2}{x}+\frac{2011}{x^2}\)
Đặt \(\frac{1}{x}=y\)ta có:
\(A=1-2y+2011y^2\)
\(A=2011y^2-2y+1\)
\(A=2011\left(y^2-\frac{2}{2011}y+\frac{2}{2011}\right)\)
\(=2011\left(y^2-2\times y\times\frac{1}{2011}+\frac{1}{2011^2}-\frac{1}{2011^2}+\frac{1}{2011}\right)\)
\(=2011\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
\(=2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)
Vì (y-\(\frac{1}{2011}\))\(^2\)>=0
\(\Rightarrow2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)
Hay \(A>=\frac{2010}{2011}\)
I> Cho bieu thuc
A = ( \(\frac{2x+1}{2x-1}\)- \(\frac{2x-1}{2x+1}\)) : \(\frac{8x}{3-6x}\)( voi x khac + - \(\frac{1}{2}\)x khax 0 )
a . Rut gon bieu thuc A
b . Tim x de A = \(\frac{3}{-4031}\)
II> Cho bieu thuc
B = ( \(\frac{1}{1-x}\)+\(\frac{2}{x+1}\)-\(\frac{5-x}{1-x^2}\)) : \(\frac{1-2x}{x^2-4}\)
a . Rut gon bieu thuc B
b . Tìm giá trị nguyên của x để giá trị của biểu thức B là số nguyên