x2-\(\frac{1}{10}\)x-\(\frac{1}{5}\)=0
tính tích các giá trị của x thỏa mãn
tìm x,y thỏa mãn đẳng thức sau: x2-2xy+2y2+2y+1=0
tính giá trị của biểu thức : B=2022x+2023y
=>x^2-2xy+y^2+y^2+2y+1=0
=>(x-y)^2+(y+1)^2=0
=>x=y=-1
B=-2022-2023=-4045
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
Cho biết các số x,y,z thỏa mãn :
x2+2y+1=0
y2+2z+1=0
z2+2x+1=0
Tính giá trị biểu thức:
a) A = x2020 + y2020+z2020
b) B=\(\dfrac{1}{x^{2022}}+\dfrac{1}{y^{2022}}+\dfrac{1}{z^{2022}}\)
Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))
a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)
b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)
Tích các giá trị của x thỏa mãn :
\(x^2-\frac{1}{10x}-\frac{1}{5}=0\)
Tập hợp các giá trị của x thỏa mãn\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}+\frac{x+1}{13}+\frac{x+1}{14}\)=0
= (x + 1) (1/10 + 1/11 + 1/12 + 1/13 + 1/14 ) = 0
=> x + 1 = 0
=> x = - 1
1) Cho pt x^2 - 2x + m = 0 (với m là số thực thỏa mãn m<1)
Chứng minh phương trình đã cho 2 nghiệm phần biệt
2) Cho x1 và x2 là hai nghiệm của pt x^2 +2x -1 =0
Tính giá trị biểu thức P= 1/x1 + 1/x2
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
Cho phương trình
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)
Tìm các giá trị của m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn \(\frac{1}{x1}+\frac{1}{x2}=\frac{x1+x2}{5}\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\) \(\left(#\right)\)
từ pt \(\left(#\right)\) ta có \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)
\(\Delta'=m^2-4m+4-m^2-2m+3\)
\(\Delta'=-6m+7\)
để pt \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)
\(\Leftrightarrow-6m+7>0\)
\(\Leftrightarrow-6m>-7\)
\(\Leftrightarrow m< \frac{7}{6}\)
theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)
theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)
\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)
từ \(\left(1\right)\) ta có \(m=2\) ( KTM )
từ \(\left(2\right)\) ta có \(m^2+2m-8=0\) \(\left(3\right)\)
từ pt \(\left(3\right)\) ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)
vì \(\Delta'>0\) nên pt \(\left(3\right)\) có 2 nghiệm phân biệt \(m_1=-2+3=1\) ; ( TM )
\(m_2=-2-3=-5\) ( TM )
vậy \(m_1=-5;m_2=1\) là các giá trị cần tìm
Cho các số x,y thỏa mãn đẳng thức
tính giá trị biểu thức M=(x+y)2017+(x-2)2018+(y+ 1)2015
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Giá trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)