Cho tam giác ABC nhọn nội tiếp (O). Các đường cao BD,CE cắt (O) tại M,N. Chứng minh: MN//DE
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED
b) Xét tứ giác BEDC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC nhọn nội tiếp đường tròn (O).
Các đường cao BD, CE của tam giác ABC cắt nhau tại H
và cắt đường tròn (O) lần lượt tại M và N. Chứng minh:
a. Các tứ giác ADHE, BEDC nội tiếp
b. DE/MN
c. OA.LDE
ch tam giác nhọn ABC nội tiếp trong đường tròn tâm O đường cao BD và CE cắt nhau tại H
a) cm các tứ giác ADHE và BCDE nội tiếp
b0 tia BD và CE lần lượt cắt đường tròn (O)tại M và N CM DE//MN
Cho tam giác nhọn ABC nội tiếp đường tròn o . Các đường cao BD và CE của tam giác cắt nhau tại D. CM/ tứ giác ADCE và BCDE nội tieps đường tròn b.TIa BD và CE lần lượt cắt đường tròn tại M và N. Cm DE//MN c. ké đườn kính Ak. m tứ giác BKCM là hình thang cân
Cho tam giác ABC nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BD và CE cắt tại H{ với De AC; E = AB). BD và CE lần
lượt cắt đường tròn tại M và N.
a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Biết overline ACN = 30 deg . Tính số đo các cung nhỏ AN, MN
c) Chứng minh :OA 1 MN.
d) Gọi giao điểm của AH và BC là K. Chứng minh 2R.AK = AB.AC
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiêp
b: góc ABM=góc ACN
=>sđ cung AM=sđ cung AN=2*30=60 độ
=>AM=AN
c: OM=ON
AM=AN
=>OA là trung trực của MN
=>OA vuông góc MN
d: Kẻ đường kính AD
Xét ΔACD vuông tại C và ΔAKB vuông tại K có
góc ADC=góc ABK
=>ΔACD đồng dạng với ΔAKB
=>AC/AK=AD/AB
=>AK*2*R=AB*AC
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Các đường cao BD,CE cắt nhau tại H. DE cắt BC tại F. Gọi K là giao điểm của AF với (O),N là giao điểm của KH
a) Chứng minh tứ giá BEDC nội tiếp. Xác định tâm M của đường tròn ngoại tiếp tứ giác BEDC
b ) Chứng minh góc FKE= góc FDA
c ) Chứng minh AN là đường kính của đường tròn tâm O từ đó suy ra FH vuông góc với AM
cho tam giác abc nhọn nội tiếp (o) các đường cao bd và ce căt nhau tại h cắt đường tròn (o) tại d` và e`
chứng minh ao vuông góc de
Gọi K là giao của AO với đường tròn
Gọi M và N lần lượt là giao của BD với AC bà CE với AB. Xét tg vuông ABM và ACN có \(\widehat{BAC}\) chung
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Mà sđ\(\widehat{ABD}=\frac{1}{2}\) sđ cung AD và sđ \(\widehat{ACE}=\frac{1}{2}\) sđ cung AE => sđ cung AD = sđ cung AE (1)
Ta có sđ cung AEK = sđ cung ADK (2)
sđ cung EK = sđ cung AEK - sđ cung AE (3)
sđ cung DK = sđ cung ADK - sđ cung AD (4)
Từ (1) (2) (3) và (4) => sđ cung EK = sđ cung DK (*)
sđ \(\widehat{EDK}=\frac{1}{2}\) sđ cung EK và sđ \(\widehat{DEK}=\frac{1}{2}\) sđ cung DK (**)
Từ (*) và (**) \(\Rightarrow\widehat{EDK}=\widehat{DEK}\) => tam giác KDE cân tại K (***)
Mặt khác
\(\widehat{AKE}=\widehat{ACE}\) (Góc nội tiếp cùng chắn cung AE)
\(\widehat{AKD}=\widehat{ABD}\) (Góc nội tiếp cùng chắn cung AD)
Mà \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\widehat{AKE}=\widehat{AKD}\) => AO là phân giác của \(\widehat{DKE}\) (****)
Twg (***) và (****) \(\Rightarrow AO\perp ED\) (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Cho tam giác nhọn ABC nội tiếp đường tròn (O) . Các đường cao BD, CE ( D thuộc AC, E thuộc AB ) cắt nhau tại H . Đường thẳng DE cắt đường thẳng BC tại G .
1) Chứng minh tứ giác BCDE là tứ giác nội tiếp được trong đường tròn .
2) Chứng minh : GB . GC = GE . GD .
3) Đường thẳng AG cắt đường tròn (O) tại điểm M . Chứng minh : góc MAB = góc MDG .
Mình cần câu 3 thôi ạ (k cần giải chi tiết, chỉ cần nêu ý)
3:
Xét ΔGMB và ΔGCA có
góc GMB=góc GCA
góc G chung
=>ΔGMB đồng dạng với ΔGCA
=>GM/GC=GB/GA
=>GM*GA=GB*GC
Xét ΔGEB và ΔGCD có
góc GEB=góc GCD
góc EGB chung
=>ΔGEB đồng dạng với ΔGCD
=>GE/GC=GB/GD
=>GE*GD=GB*GC=GM*GA
=>GE/GA=GM/GD
=>ΔGEM đồng dạng với ΔGAD
=>góc GEM=góc GAD
=>góc DEM+góc DAM=180 độ
=>ADEM nội tiếp
=>góc MDE=góc MAE
Cho tam giác ABC nội tiếp trong đường tròn (O), kẻ các đường cao BD và CE của tam giác ABC chúng cắt nhau tại H a) Chứng minh tứ giác ADHE nội tiếp . b) Gọi M, N là giao điểm của DE với đường tròn, xy là tiếp tuyến của đường tròn (O) tại A. Chứng minh: MN//xy.
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
b; góc xAC=góc ABC
=>góc xAC=góc ADE
=>xy//DE