Cho a,b,c>0 và a+b+c=3.Tìm GTLN của D=\(\dfrac{ab}{c+3}+\dfrac{bc}{a+3}+\dfrac{ca}{b+3}\)
Cho a,b,c>0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\). Tìm GTLN P=\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\)
cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ca+a^2}}\)
\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c>0 và ab+bc+ac=3
Tìm GTLN P=\(\dfrac{a}{\sqrt{^{ }a^2+3}}\)+\(\dfrac{b}{\sqrt{^{ }b^2+3}}\)+\(\dfrac{c}{\sqrt{c^2+3}}\)
Cho 3 số thực a,b,c thay đổi .Tìm gtln của biểu thức :
P=\(3\sqrt[3]{\dfrac{c^2-3a^2}{6}}-2\sqrt{\dfrac{a^2+b^2+c^2-ab-bc-ca}{3}}\)
cho a,b,c>0 , tìm GTNN của biểu thức:
P= \(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{c^2+a^2}{b^2+ca}\)
\(P\ge\dfrac{3abc}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{c^2+a^2}{b^2+\dfrac{c^2+a^2}{2}}\)
\(P\ge\dfrac{3}{2}+2\left(\dfrac{a^2+b^2}{a^2+c^2+b^2+c^2}+\dfrac{b^2+c^2}{a^2+b^2+a^2+c^2}+\dfrac{a^2+c^2}{a^2+b^2+b^2+c^2}\right)\)
Đặt \(\left(a^2+b^2;b^2+c^2;a^2+c^2\right)=\left(x;y;z\right)\)
\(\Rightarrow P\ge\dfrac{3}{2}+2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{3}{2}+2\left(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{yz+xy}+\dfrac{z^2}{xz+yz}\right)\)
\(P\ge\dfrac{3}{2}+\dfrac{2\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3}{2}+\dfrac{3\left(xy+yz+zx\right)}{xy+yz+zx}=3+\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho 3 số dương a, b, c thỏa mãn a + b + c = 6. Tính GTLN của biểu thức
\(P=\dfrac{ab}{6-c}+\dfrac{bc}{6-a}+\dfrac{ca}{6-b}\)
\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)
\(P_{max}=3\) khi \(a=b=c\)
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\).Tìm Max:
\(P=\dfrac{a}{a^2+4a+3}+\dfrac{b}{b^2+4b+3}+\dfrac{c}{c^2+4c+3}\)
\(ab+bc+ca=3\Rightarrow\left\{{}\begin{matrix}a+b+c\ge3\\abc\le1\end{matrix}\right.\)
Ta sẽ chứng minh \(P\le\dfrac{3}{8}\)
\(P\le\dfrac{a}{6a+2}+\dfrac{b}{6b+2}+\dfrac{c}{6c+2}\) nên chỉ cần chứng minh: \(\dfrac{a}{3a+1}+\dfrac{b}{3b+1}+\dfrac{c}{3c+1}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3a+1}+\dfrac{1}{3b+1}+\dfrac{1}{3c+1}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{\left(3a+1\right)\left(3b+1\right)+\left(3b+1\right)\left(3c+1\right)+\left(3c+1\right)\left(3a+1\right)}{\left(3a+1\right)\left(3b+1\right)\left(3c+1\right)}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{6\left(a+b+c\right)+30}{27abc+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)
\(\Rightarrow\dfrac{6\left(a+b+c\right)+30}{27+3\left(a+b+c\right)+28}\ge\dfrac{3}{4}\)
\(\Leftrightarrow24\left(a+b+c\right)+120\ge165+9\left(a+b+c\right)\)
\(\Leftrightarrow a+b+c\ge3\) (đúng)
Cho a, b, c > 0 có ab + bc + ca = 1. Tìm GTNN \(P=\dfrac{a^3}{b^2+1}+\dfrac{b^3}{c^2+1}+\dfrac{c^3}{a^2+1}\)
\(P=\dfrac{a^3}{b^2+ab+bc+ca}+\dfrac{b^3}{c^2+ab+bc+ca}+\dfrac{c^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}\)
Ta có:
\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge\dfrac{3a}{4}\)
\(\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3c}{4}\)
Cộng vế:
\(P+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow P\ge\dfrac{1}{4}\left(a+b+c\right)\ge\dfrac{1}{4}.\sqrt{3\left(ab+bc+ca\right)}=\dfrac{\sqrt{3}}{4}\)
Cho a+b+c=1. Tìm GTLN của
\(A=\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}+\dfrac{ab}{\sqrt{c+ab}}\)
Cần điều kiện a;b;c dương
\(\dfrac{bc}{\sqrt{a.1+bc}}=\dfrac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\)
Tương tự: \(\dfrac{ca}{\sqrt{b+ca}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\) ; \(\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Cộng vế với vế:
\(A\le\dfrac{1}{2}\left(\dfrac{bc+ca}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ca+ab}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)