Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Hoàng
Xem chi tiết
Hồng Phúc
12 tháng 3 2021 lúc 13:03

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

Hồng Phúc
16 tháng 4 2021 lúc 6:52

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

Kinder
Xem chi tiết
anh em mình là 1 gia đìn...
Xem chi tiết
Akai Haruma
28 tháng 3 2021 lúc 20:55

Lời giải:

Nếu $x=-2$ thì HBPT $\Leftrightarrow $m\geq -2$

Nếu $x\neq -2$ thì HBPT \(\Leftrightarrow \left\{\begin{matrix} x+1\geq 0\\ x\leq m\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} x\geq -1\\ x\leq m\end{matrix}\right.\Leftrightarrow -1\leq x\leq m(*)\).

Giả sử $m>-1$ thì HBPT có vô số nghiệm thực $x$

Giả sử $m< -1$ thì $(*)$ vô lý nên HBPT chỉ có thể nhận nhiều nhất 1 nghiệm $x=-2$

Giả sử $m=-1$ thì $(*)$ có nghiệm $x=-1$. Tổng kết lại HBPT có 2 nghiệm $x=-1$ và $x=-2$

Thảo Vi
Xem chi tiết
chi nguyễn khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 0:30

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

Bùi Trần Duy Phát
19 tháng 3 lúc 23:19
vũ manh dũng
Xem chi tiết
Hồng Phúc
17 tháng 3 2021 lúc 22:03

\(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)

Yêu cầu bài toán thõa mãn khi \(f\left(x\right)=0\) có hai nghiệm thỏa mãn \(x_1\le1< 3\le x_2\)

\(\left\{{}\begin{matrix}\Delta'=m^2-3m+3\ge0\\f\left(1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\-m+1\le0\\15-5m\le0\end{matrix}\right.\)

\(\Leftrightarrow m\ge3\)

Lê Thị Trang
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 4 2020 lúc 21:08

\(x^2-\left(2m+1\right)x+m^2+m\le0\)

\(\Leftrightarrow\left(x-m\right)\left(x-m-1\right)\le0\)

\(\Rightarrow m\le x\le m+1\)

Để hệ có nghiệm \(\Leftrightarrow f\left(x\right)=x^2-2x+1\le m\left(1\right)\) có nghiệm thuộc \(\left[m;m+1\right]\)

\(\Leftrightarrow m\ge\min\limits_{\left[m;m+1\right]}\left(x^2-2x+1\right)\)

- TH1: \(m\le1\le m+1\Rightarrow0\le m\le1\)

\(\Rightarrow f\left(x\right)_{min}=f\left(1\right)=0\Rightarrow m\ge0\Rightarrow0\le m\le1\)

- TH2: \(m>1\Rightarrow f\left(x\right)\) đồng biến trên \(\left[m;m+1\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(m\right)=m^2-2m+1\)

\(\Rightarrow m\ge m^2-2m+1\Leftrightarrow m^2-3m+1\le0\)

\(\Rightarrow\frac{3-\sqrt{5}}{2}\le m\le\frac{3+\sqrt{5}}{2}\)

Kết hợp điều kiên \(\Rightarrow1< m\le\frac{3+\sqrt{5}}{2}\)

Vậy với \(0\le m\le\frac{3+\sqrt{5}}{2}\) thì BPT đã cho có nghiệm

Hi Mn
Xem chi tiết
Trúc Hạ
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2020 lúc 15:34

Với \(m=0\) hệ có nghiệm \(x=1\)

Với \(m\ne0\)

Xét \(x^2-2x+1-m\le0\) (1)

\(\Delta'=m\Rightarrow\) để (1) có nghiệm thì \(m>0\Rightarrow1-\sqrt{m}\le x\le1+\sqrt{m}\) (3)

Xét \(f\left(x\right)=x^2-2\left(m+1\right)x+m^2+m\le0\) (2)

\(\Delta'=\left(m+1\right)^2-\left(m^2+m\right)=m+1\)

Với \(m>0\Rightarrow\) (2) có nghiệm \(m+1-\sqrt{m+1}\le x\le m+1+\sqrt{m+1}\) (4)

Khi \(m>0\Rightarrow m+1+\sqrt{m+1}>1+\sqrt{m}\)

\(\Rightarrow\) Để (3) giao (4) khác rỗng

\(\Leftrightarrow m+1-\sqrt{m+1}\le1+\sqrt{m}\)

\(\Leftrightarrow m-\sqrt{m}\le\sqrt{m+1}\)

- Với \(0< m\le1\Rightarrow\left\{{}\begin{matrix}VP>0\\VT\le0\end{matrix}\right.\) BPT luôn đúng

- Với \(m>1\) bình phương 2 vế:

\(\Leftrightarrow m^2-2m\sqrt{m}+m\le m+1\)

\(\Leftrightarrow m^2-2m\sqrt{m}-1\le0\)

\(t=\sqrt{m}\Rightarrow t^4-2t^3-1\le0\)

Rất tiếc BPT này ko giải được ^.^

Hanako-kun
7 tháng 5 2020 lúc 15:13

\(x^2-2x+1-m>0\) với mọi x \(\Leftrightarrow\Delta'< 0\Leftrightarrow1-1+m< 0\Leftrightarrow m< 0\)

Vậy để \(x^2-2x+1-m\le0\) với mọi x \(\Leftrightarrow m\ge0\)

Xét \(x^2-\left(2m+2\right)x+m^2+m\)

Để \(x^2-2\left(m+1\right)x+m^2+m>0\Leftrightarrow\Delta'< 0\)

\(\Leftrightarrow m^2+2m+1-m^2-m< 0\Leftrightarrow m< -1\)

Vậy để \(x^2-2\left(m+1\right)x+m^2+m\le0\Leftrightarrow m\ge-1\)

Kết hợp lại ta có \(m\ge0\)