chứng minh nếu p là số nguyên tố khác 3 thì số A=3n+2014+2012p^2 là hợp số với n thuộc N
Câu 1: CMR nếu b là số nguyên tố khác 3 thì số :
A = 3n + 1 + 2009b^2 là hợp số với mọi n thuộc N.
Cmr: nếu b là số nguyên tố khác 3 thì A=3n+1+2009b là hợp số với n thuộc N, cảm ơn ạ.
B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2
B=3k+1 thì A =3n+6027k+2010 chia hét cho 3
B=3k+2 thì A=
1.a,Tìm stn n để 9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
b,Tìm số nguyên tố n sao cho n+2 và n+4 đều là số nguyên tố
2.a,Chứng minh với mọi số nguyên x,y nếu:6x+11y chia hết cho 31 thì x+7y chia hết cho 31
b,Chứng minh rằng với mọi STN n khác 0 thì 2n+1 và n(n+1)là 2 số nguyên tố cùng nhau
MNG IUPS EM VS Ạ :))
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
câu 1 : chứng minh 20142016 - 51n chia hết cho 5
câu 2 : chứng minh ƯCLN (21n + 4 , 14n + 3 ) = 1
câu 3 : chứng minh nếu p là số nguyên tố > 3 và 2p + 1 là số nguyên tố thì 4p + 1 là hợp số
1. Có : 51^n có tận cùng là 1
2014^2016 = (2014^2)^1008 = ....6^2018 = ....6 có tận cùng là 6
=> 2014^2016-51^n có tận cùng là 6-1=5 => 2014^2016-51^n chia hết cho 5
2. Gọi ƯCLN (21n+4;14n+3) = d ( d thuộc N sao )
=> 21n+4 và 14n+3 đều chia hết cho d
=> 2.(21n+4) và 3.(14n+3) đều chia hết cho d
=> 42n+8 và 42n+9 đều chia hết cho d
=> 42n+9-(42n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN (21n+4;14n+3) = 1
3.
p nguyên tố > 3 nên p ko chia hết cho 3
Nếu p chia 3 dư 1 => 2p chia 3 dư 2 => 2p+1 chia hết cho 3
Mà 2p+1 > 3 => 2p+1 là hợp số
=> để 2p+1 là số nguyên tố thì p chia 3 dư 2
=> 4p chia 3 dư 8 hay 4p chia 3 dư 2
=> 4p+1 chia hết cho 3
Mà 4p+1 > 3 => 4p+1 là hợp số
=> ĐPCM
Tk mk nha
Cho p là số nguyên tố > 3 và n thuộc N* .chứng minh \(p^2+3n+2\)là hợp số