Tinh: (n-1)(n+1)/(2n-1)(2n+1)
tinh gia tri bieu thuc (-1)^2n. (-1)^n.(-1)^n+1
\(\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^n+1=\left(-1\right)^{2n+n+n}+1=\left(-1\right)^{4n}+1=1+1=2\)
chứng minh rằng
1, 1/n(n+1)=1/n-1/n+1
2, 2/n(n+1)(n+2)=1/n(n+1)-1/(n+1)(n+2)
3, 3/n(n+1)(n+2)(n+3)=1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)
4, 4/(2n-1)(2n+1)(2n+3)=1/(2n+1)(2n-1)-1/(2n+1)(2n+3)
5, m/n(n+m)=1/n-1/n+m
6, 2m/n(n+m)(n+2n)=1/n(n+m)-1/(n+m)(n+2n)
Với mọi số nguyên n, biểu thức nào dưới đây chia hết cho 5.
A. M = 2n (2n - 5) + (2n + 1)(1 - 2n). B. N = n (2n - 3) - 2n (n + 1).
C. P = (n - 1)(3 - 2n) + 2n (n + 5). D. Q = (n - 1)(n + 3) - (n - 3)(n + 1).
chứng minh rằng
1, 1/n(n+1)=1/n-1/n+1
2, 2/n(n+1)(n+2)=1/n(n+1)-1/(n+1)(n+2)
3, 3/n(n+1)(n+2)(n+3)=1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)
4, 4/(2n-1)(2n+1)(2n+3)=1/(2n+1)(2n-1)-1/(2n+1)(2n+3)
5, m/n(n+m)=1/n-1/n+m
6, 2m/n(n+m)(n+2n)=1/n(n+m)-1/(n+m)(n+2n)
ai nhanh mình tick trước 9 giờ
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
chị thương ơi gửi em đề bài câu 9,10 toán bài 2
(1^2/1.3)+(2^2/3.5)+....+(n^2/(2n-1)(2n+1))=(n(n+1))/((2n-1)(2n+1))
Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)
tinh gioi han \(\lim\dfrac{1+cos\left(n^2\right)}{1+2n}\)
\(0\le1+cosn^2\le2\Rightarrow0\le\dfrac{1+cosn^2}{1+2n}\le\dfrac{2}{1+2n}\)
Mà \(\lim\left(0\right)=\lim\left(\dfrac{2}{1+2n}\right)=0\)
\(\Rightarrow\lim\dfrac{1+cosn^2}{1+2n}=0\)
tinh
2n+3 chia hết cho n-2
3n+1 chia hết 11-2n
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ta có: 1.3.5...(2n - 1)
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n)
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ]
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ]
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2)
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2)
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2)
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n
Ở ngô, giả thiết hạt phấn (n + 1) không có khả năng thụ tinh; noãn (n + 1) vẫn thụ tinh bình thường. Gọi gen R quy định hạt đỏ trội hoàn toàn so với gen r qui định hạt trắng. Cho P: ♂RRr (2n + 1) X ♀ Rrr (2n + 1). Tỉ lệ kiểu hình ở F1 là:
A. 3 đỏ : 1 trắng
B. 5 đỏ : 1 trắng
C. 11 đỏ : 1 trắng
D. 35 đỏ : 1 trắng
Đáp án B
P: ♂RRr (2n + 1) × ♀ Rrr (2n + 1).
G có khả năng thụ tinh: 2R:1r x 1R:2r:2Rr:1rr
Tỷ lệ hạt phấn chỉ chứa alen lặn là: 1/3
Tỷ lệ noãn chỉ chứa alen lặn : 1/2
Vậy tỷ lệ kiểu hình hạt trắng là 1/2 ×1/3 = 1/6
Tỷ lệ kiểu hình hạt đỏ là: 1 – 1/6 = 5/6.