Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dream XD
Xem chi tiết
Nhan Thanh
Xem chi tiết
Nguyễn Thanh Hải
20 tháng 4 2020 lúc 20:20

A=\(75.\left(4^{2004}+4^{2003}+4^2+4+1\right)+25\)

A=\(75.\left(4^{2005}-1\right):3+25\)

A=\(25.\left(4^{2005}-1+1\right)\)

A=\(25.4^{2005}⋮100\)

Nhớ tick cho mình nhé!haha

Phạm Băng Băng
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 22:00

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)

Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 22:01

\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)

\(=5\left(1+...+4^{98}\right)⋮5\)

nguyen khanh li
Xem chi tiết
nguyen khanh li
22 tháng 4 2015 lúc 19:55

giup minh voi sap phai nop roi

Chu anh tú
18 tháng 1 2018 lúc 19:40

câu a Achia hết cho 128

Hoàng Minh Tiến
Xem chi tiết
Hania Nguyễn
Xem chi tiết
Phạm Minh Thiện
Xem chi tiết
Tấn Bùi
Xem chi tiết
Thanh Hằng Nguyễn
3 tháng 1 2018 lúc 18:48

\(S=6+6^2+6^3+.......+6^{100}\)

\(=\left(6+6^2\right)+\left(6^3+6^4\right)+......+\left(6^{99}+6^{100}\right)\)

\(=6\left(6+6^2\right)+6^3\left(6+6^2\right)+.....+6^{99}\left(6+6^2\right)\)

\(=6.42+6^3.42+.........+6^{99}.42\)

\(=42\left(6+6^3+.........+6^{99}\right)⋮42\left(đpcm\right)\)

Nguyễn Trúc
Xem chi tiết

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)