cho x > 0, y>0 và x+y=1. Chứng minh : 8(x^4 + y^4) + \(\frac{1}{xy}\) \(\ge\)5
ai biết giúp mình với mai ktra rồi .Chứng minh với mọi x, y:\(x^4+y^4\ge x^3y+xy^3\)
cho x,y > 0. Chứng minh : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
cho x2+y2=1.Chứng minh: \(\left(x+y\right)^2\le2\)
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
ta có \(\left(x-y\right)^2\ge0\)
<=> \(x^2+y^2\ge2xy\)
<=>\(x^2+y^2+2xy\ge4xy\)
<=>\(\left(x+y\right)^2\ge4xy\)
<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
<=>\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
cho x>0 ; y>0 và x+y=1 . CM 8(x4+y4)+1/xy\(\ge\)5
https://olm.vn/hoi-dap/detail/5617054235.html
https://olm.vn/hoi-dap/detail/5617054235.html
Xem tại: Câu hỏi của Vương Hoàng Minh - Toán lớp 9 - Bất đẳng thức
có bđt: a²+b² ≥ (a+b)²/2 (*)
(*) <=> 2a²+2b² ≥ a²+b²+2ab <=> a²+b²-2ab ≥ 0 <=> (a-b)² ≥ 0 bđt đúng, dấu "=" khi a = b
- - -
ad (*) 2 lần liên tiếp:
x^4 + y^4 ≥ (x²+y²)²/2 ≥ [(x+y)²/2]²/2 = (x+y)^4 /8 = 1/8
=> 8(x^4 + y^4) ≥ 1 (*)
mặt khác, có bđt: (x-y)² ≥ 0 <=> x²+y² ≥ 2xy <=> x²+y²+2xy ≥ 4xy <=> (x+y)² ≥ 4xy
=> 1/xy ≥ 4/(x+y)² = 4 (**)
(*) + (**): 8(x^4 + y^4) + 1/xy ≥ 1+4 = 5 (đpcm) dấu "=" khi x = y = 1/2
cho x,y,z >0 và x+y+z=1
chứng minh: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\)\(\ge\)\(\frac{9}{4}\)
Bất đẳng thức bị ngược dấu rồi!
Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)
Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)
Áp dụng BĐT Côsi cho hai số dương ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)
Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)
Cho x,y > 0 va x + y = 1. CMR: 8\(\left(x^4+y^4\right)\) + \(\frac{1}{xy}\) ≥ 5
Với mọi x,y >0 có \(\left(x+y\right)^2\ge4xy\)
=> \(1\ge4xy\) (do x+y=1) <=> \(\frac{1}{xy}\ge4\)
Lại có \(x^2+y^2\ge2xy\)
<=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
<=> \(x^2+y^2\ge\frac{1}{2}\)
Có \(x^4+y^4\ge2x^2y^2\)
<=> \(2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2\)
<=> \(8\left(x^4+y^4\right)\ge\frac{1}{4}.4=1\)
=> \(8\left(x^4+y^4\right)+\frac{1}{xy}\ge1+4=5\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
cho x,y là các số tự nhiên và x+y\(\ge\)0. chứng minh \(\frac{1}{1+4^x}+\frac{1}{1+4^y}\ge\frac{2}{1+2^{x+y}}\)
Cho x,y,z > 0, x + y + z \(\ge\)1 . Chứng minh :
\(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\ge1\)
\(\frac{x^5}{y^4}+\frac{x^5}{y^4}+y+y+y\ge5\sqrt[5]{\frac{x^{10}y^3}{y^8}}=\frac{5x^2}{y}\)
Tương tự: \(\frac{2y^5}{z^4}+3z\ge\frac{5y^2}{z}\) ; \(\frac{2z^5}{x^4}+3x\ge\frac{5z^2}{x}\)
Cộng vế với vế:
\(2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)+3\left(x+y+z\right)\ge5\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge5\left(x+y+z\right)\)
\(\Rightarrow2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)\ge2\left(x+y+z\right)\ge2\)
\(\Rightarrow\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\ge1\)
Dấu "=" xay ra khi \(x=y=z=\frac{1}{3}\)
cho x,y>0 và \(x+y\le1\). Chứng minh: \(8\left(x^4+y^4\right)+\frac{1}{xy}\ge5\)
giải bài toán: Cho x>0; y>0 và x+y≤1. Chứng minh: \(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)≥4
áp dụng bđt dang Engel
P=1/[x(x+y) ]+1/[y(x+y) ]
=1/(x+y). (1/x+1/y)
=1/(x+y). [(x+y) /xy]=1/(xy)
x+y≤1,x, y>0=>x.y≤1/4
p≥1/(1/4)=4
đẳng thức khi x=y=1/2