Bài 3: Tính
c; 215 + (-38) - (-58) -15
Bài 1: Co A= 3^0 + 3^2 + 3^4+ ... + 3^2002
a) Tính A
b) Chứng minh rằng A chia hết cho 7
Bài 2: Cho C =2 + 2^2 + 2^3++2^4...+ 2^100. Tính C
Bài 3 : Tính C= 3+ 3^2+3^3+..+3^100
a) Tính C
b) Tìm n biết 2.C+3=3^n
\(3A=3+3^2+...3^{2003}\)
\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)
\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)
Bài 1: Co A= 3^0 + 3^2 + 3^3 + ... + 3^2002
a) Tính A
b) Chứng minh rằng A chia hết cho 7
Bài 2: Cho C = 3+ 3^2 + 3^3 +...+ 3^100
a) Tính C
b) Tìm n biết 2.C+3=3^n
Bài 3 : Tính B= 3+ 3^2+3^3+..+3^100
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Bài 1: 4950
Áp dụng công thức tính tổng ta có:
SSH: (SĐ-SC): KC +1
Tổng: (SĐ+SC).SSH:2
áp dụng tương tự cho bài 2 và 3
Bài 1 : SSH : (99 - 1) : 1 + 1 = 99
Tổng : (99+1) . 99 : 2 = 4950
B = 4950
Bài 2 : SSH : (999 - 1) : 2 + 1 = 500
C = (999+1) . 500 : 2 = 250 000
Bài 3 : SSH : (998 - 10 ) : 2 + 1 = 495
D = (998 + 10) . 495 : 2 = 249480
Sai thì xl :))
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Bài 1: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 2: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Bài 4 .Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
K MIK NHA BẠN ^^
Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000
Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500
Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480
Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3
= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)
=n.(n+1).(n+2)
=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
Bài 1:
Số các số hạng trong tổng C là:
\(\left(999-1\right):2+1=500\)( số hạng)
=> \(C=\left(999+1\right).500:2=250000\)
Bài 2:
Tổng B có số số hạng là: (99-1):1+1=99(số hạng)
=> \(B=\left(99+1\right)\times99:2=4950\)
Bài 3:
Số các số hạng trong tổng D là:
\(\left(998-10\right):2+1=495\)( số hạng)
=> \(D=\left(998+10\right).495:2=249480\)
Bài 4:
A = 1.2 + 2.3 + 3.4 + ... + n(n+1)
3A = 1.2.3 + 2.3.3 + 3.4.3+...+3n.(n+1)
3A = 1.2.3+2.3.(4-1)+3.4.(5-2)+...+n.(n+1){(n+2)-(n-1)}
3A = 1.2.3 + 2.3.4 - 1.2.3 +3.4.5 - 2.3.4 + .... + n(n+1)(n+2) - n(n+1)(n-1)
3A = n(n +1)(n+2)
=> A = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Vậy \(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Lời giải:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Lời giải:
Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ.
Áp dụng các bài trên ta có:
C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Số các số hạng của dãy số trên là :
( 99 - 1 ) : 1 + 1 = 99 ( số hạng )
Tổng của dãy số tren là :
\(\frac{\left(99+1\right).99}{2}=4950\)
Đ/S : 4950
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Số các số hạng của dãy số trên là :
( 999 - 1 ) : 2 + 1 = 500 ( số hạng )
Tổng của dãy số trên là :
\(\frac{\left(999+1\right).500}{2}=250000\)
Đ/S : 250 000
Bài 1:
Giải:
Số số hạng là:
(99—1):1+1=99(số số hạng)
Tổng dãy số trên là:
(99+1)x99:2=4950
Đáp số:4950
Bài 2:
Giải:
Số số hạng là:
(999—1):2+1=500(số số hạng)
Tổng dãy số trên là:
(999+1)x500:2=250000
Đáp số:250000
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 3: Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Giải nhanh giúp mình với huhu
(bài lớp 7)
B=(99+1)x99/2
=4950
C=(999+1)x500/2
=250000
D=(998+10)x495/2
=249480
B = (99+1)x99:2=4950
C=(999+1)x500:2=250000
D = ( 998 + 10 ) x 495 : 2 = 249480
Ai thấy đúng ủng hộ nha !!!
bài 1 lấy số đâu cộng với số cuối roi chia cho 99
Bài 1: tính:
A=3x4+4x5+5x6+...+58x59+59x60
Bài 2: Tính:
A=2x4+4x6+6x8+...+96x98+98x100
bài 3: tính:
B=2x3+5x8+8x11+...+89x92+92x95
bài 4: tính:
C=3x4x5+4x5x6+5x6x7+...+20x21x22+21x22x23
bài 5: tính:
C=2x4x6+4x6x8+...+20x22x24+22x24x26
bài 6: tính:
C=1x4x7+4x7x10+...+21x24x27+24x27x30
bài 7: tính:
A=3x7x11+7x11x15+...+23x27x31+27x31x35
bài 8: tính:
A=1x4+3x6+5x8+...+47x50+49x52
bài 9: tính:
A=1+3+6+10+...+4851+4950
AI LÀM HỢP LÝ MÌNH SẼ TICK CHO NHA...
CỐ LÊN...
Bài 1
A= 3.4 + 4.5+ 5.6+ .......+ 58.59 + 69.60
3A = 3.4.3 + 4.5.3+ 5.6.3+ .......+ 58.59.3 +59.60.3
= 3.4.(5-2) + 4.5.(6-3)+ 5.6.(7-4)+ .......+ 58.59.(60-57) +59.60.(61-58)
= 3.4.5-2.3.4+4.5.6-3.4.5+5.6.7-4.5.6+..........+ 58.59.60-57.58.59+ 59.60.61-58.59.60
=2.3.4+ 59.60.61= 215964
A= 215964: 3= 71988
Bài 2:
A = 2.4 +4.6+ 6.8+.........+ 96.98+98.100
6A= 2.4.6+4.6.6+6.8.6+.........+96.98.6+98.100.6
= 2.4.6+ 4.6.(8-2) +6.8.(10-4)+.........+96.98.( 100-94) + 98 .100.( 102 - 96)
= 2.4.6+4.6.8-2.4.6 + 6.8.10 -4.6.8+..........+ 96.98.100-94.96.98+ 98.100.102-96.98.100
= 98 .100 .102= 999600
A= 999600:6= 166600
ĐỒNG TỐ HIỂU PHONG. CÒN NHIỀU CÂU
Ai giải được nào ?? Mình giải được rồi
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Bài 1 : \(B=1+2+3+...+98+99=\frac{\left(99+1\right).99}{2}=4950\)
Bài 2 : \(C=1+3+5+...+997+999=\frac{\left(999+1\right).499}{2}=249500\)
Bài 3 : \(D=10+12+14+...+996+998=\frac{\left(998+10\right).495}{2}=249480\)
Mấy bài này áp dụng công thức nhé bạn
Bài 1:B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Bài 2 : C có số số hạng là :
[999-1] : 2 + 1 = 500 số
Tổng C là :
[999+1] x 500 : 2 = 250000
ĐS: 250000
Bài 3: D= 10 + 12 + 14 + ... + 994 + 996 + 998
=10+[12+998]+[16+996]+...+[500+500]
= 10 + 1010 + 1010 + ... + 1010
= 10 + 1010 x 247 [Ta tính số số hạng 2]
= 10 + 249470 = 249480