Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 14:21

a: Xét (O) có

\(\widehat{AMB}\) là góc nội tiếp chắn cung AB

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AMB}=\widehat{ACB}=60^0\)

Xét ΔMBD có MB=MD

nên ΔMBD cân tại M

Xét ΔMBD cân tại M có \(\widehat{DMB}=60^0\)

nên ΔMBD đều

b: ΔBMD đều

=>\(\widehat{BDM}=60^0\)

\(\widehat{BDA}+\widehat{BDM}=180^0\)(hai góc kề bù)

=>\(\widehat{BDA}=180^0-60^0=120^0\)

Xét (O) có A,B,M,C cùng thuộc (O)

nên ABMC là tứ giác nội tiếp

=>\(\widehat{BMC}+\widehat{BAC}=180^0\)

=>\(\widehat{BMC}=180^0-\widehat{BAC}=180^0-60^0=120^0\)

=>\(\widehat{BMC}=\widehat{BDA}\left(=120^0\right)\left(4\right)\)

Xét (O) có

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{BCM}\) là góc nội tiếp chắn cung BM

Do đó: \(\widehat{BAM}=\widehat{BCM}\)

=>\(\widehat{BAD}=\widehat{MCB}\left(3\right)\)

Xét ΔBAD có \(\widehat{BAD}+\widehat{BDA}+\widehat{ABD}=180^0\)

=>\(\widehat{ABD}=180^0-\widehat{BAD}-\widehat{BDA}\)(1)

Xét ΔBMC có \(\widehat{BMC}+\widehat{MBC}+\widehat{MCB}=180^0\)

=>\(\widehat{MBC}=180^0-\widehat{BMC}-\widehat{MCB}\left(2\right)\)

Từ (1),(2),(3),(4) suy ra \(\widehat{ABD}=\widehat{MBC}\)

Xét ΔBDA và ΔBMC có

BA=BC

\(\widehat{ABD}=\widehat{MBC}\)

BD=BM

Do đó: ΔBDA=ΔBMC

=>AD=MC

AM=AD+DM

mà AD=MC và DM=MB

nên AM=BM+CM

Đỗ Nguyên
Xem chi tiết
Đỗ Nguyên
16 tháng 2 2022 lúc 16:06

ai giúp với

 

Krish
Xem chi tiết
Mạnh=_=
11 tháng 4 2022 lúc 11:22
Đỗ Đàm Phi Long
Xem chi tiết
Minty Nguyễn
Xem chi tiết
Bạch Cú
Xem chi tiết
vương phong
Xem chi tiết
phan tuấn anh
14 tháng 2 2016 lúc 21:06

bạn ơi câu a ko có dữ liệu thì tính sao được còn câu b đợi mk tí mk làm cho

phan tuấn anh
14 tháng 2 2016 lúc 21:14

b) vì MD=MB ==> tam giác BDM cân tại M

mà góc BMD=góc ACB=60 độ

do đó tam giác BDM đều ==>DBM=60 độ

ta có ABD+DBC=60 độ

      MBC+DBC=60 độ

==> góc ABD= CBM

DO ĐÓ TAM GIÁC ABD= tam giác CBM(c.g.c)

==> AD=CM ==> AD+DM=BM+MC=AM

==> ĐIỀU CẦN CHỨNG MINH

 

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
8 tháng 6 2017 lúc 16:38

Góc nội tiếp

Hồ Đại Việt
11 tháng 2 2019 lúc 21:25

a ) Ta có BM=MD (gt)

=> \(\Delta\)MBD cân tại M

Mặt khác \(\widehat{AMB}=\widehat{ACB}\) ( Hai góc nội tiếp chắn cung AB)

\(\widehat{ACB}=60^0\)( tam giác ABC đều)

Suy ra \(\widehat{AMB}=60^0hay\widehat{DMB}=60^0\)

Vậy \(\Delta MBD\) đều

b) Ta có \(\Delta MBD\) đều ( CMT)

Suy ra : \(\widehat{DMB}=\widehat{DBC}+\widehat{CBM}=60^0\)(1)

Lại có : tam giác ABC đều (gt)

Suy ra : \(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}=60^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{MBC}\)

Xét hai tam giác ABD và CBM ta có

BC=BA (gt)

\(\widehat{ABD}=\widehat{MBC}\left(cmt\right)\)

BD=BM( tam giác MBD đều)

=> \(\Delta ABD=\Delta CBM\left(c.g.c\right)\)

c)\(\Delta ABD=\Delta CBM\left(cmt\right)\)

SUy ra AD=CM

mà AM=AD+DM

SUy ra MA=MC+MD

Hoàng Vổ
Xem chi tiết