\(x^2+5x-11=0\). Giải phương trình
Giải phương trình :
1 ) \(x^3+5x^2-11=0\)
2 ) \(x^3-3x^2+4x+11=0\)
( phương trình bậc ba cardano )
Giải phương trình:
\(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
ĐK \(\frac{-11}{5}\le x\le6\)
Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)
\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)
Vậy pt đã cho có nghiệm duy nhất x=5
Giải các phương trình sau:
a) \(5x - 30 = 0\);
b) \(4 - 3x = 11\);
c) \(3x + x + 20 = 0\);
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\).
a) \(5x - 30 = 0\)
\(5x = 0 + 30\)
\(5x = 30\)
\(x = 30:5\)
\(x = 6\)
Vậy phương trình có nghiệm \(x = 6\).
b) \(4 - 3x = 11\)
\( - 3x = 11 - 4\)
\( - 3x = 7\)
\(x = \left( { 7} \right):\left( { - 3} \right)\)
\(x = \dfrac{-7}{3}\)
Vậy phương trình có nghiệm \(x = \dfrac{7}{3}\).
c) \(3x + x + 20 = 0\)
\(4x + 20 = 0\)
\(4x = 0 - 20\)
\(4x = - 20\)
\(x = \left( { - 20} \right):4\)
\(x = - 5\)
Vậy phương trình có nghiệm \(x = - 5\).
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\)
\(\dfrac{1}{3}x - x = 2 - \dfrac{1}{2}\)
\(\dfrac{{ - 2}}{3}x = \dfrac{3}{2}\)
\(x = \dfrac{3}{2}:\left( {\dfrac{{ - 2}}{3}} \right)\)
\(x = \dfrac{{ - 9}}{4}\)
Vậy phương trình có nghiệm \(x = \dfrac{{ - 9}}{4}\).
Giải các bất phương trình sau
a) 3x-8 > 5x +7
b) (11-x)(11+x) > 0
c) (x+2)(x+3) < 0
a, -2x>15 x>-15/2 c, th1 x+2>0 vs x+3 <0 suy ra x>-2 vs x<-3 . th2 x+2<0,x+3>0 suy ra x<-2 ,x>-3
b, 112-x2>0
x2<112 x<11
a) \(3x-8>5x+7\)
\(\Leftrightarrow-8>5x+7-3x\)
\(\Leftrightarrow-8>2x+7\)
\(\Leftrightarrow-8-7>2x\)
\(\Leftrightarrow-15>2x\)
\(\Leftrightarrow-\frac{15}{2}>x\)
\(\Rightarrow x< -\frac{15}{2}\)
b) \(\left(11-x\right)\left(11+x\right)>0\)
\(\Leftrightarrow x=\pm11\)
\(\Rightarrow-11< x< 11\)
c) \(\left(x+2\right)\left(x+3\right)< 0\)
\(\Leftrightarrow x=-2;-3\)
\(\Rightarrow-3< x< -2\)
Bài 1: Giải các phương trình sau:
a) 3x – 15 = 0 b) 4x + 20 = 0 c) -5x – 20 = 0 d) 3x + 1 = 7x – 11
e) 3 + 2x = 2(x + 1) g
a: 3x-15=0
nên 3x=15
hay x=5
b: 4x+20=0
nên 4x=-20
hay x=-5
c: -5x-20=0
nên -5x=20
hay x=-4
Giải phương trình sau bằng cách đưa về dạng ax + b = 0:
(x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)
Giải phương trình sau bằng cách đưa về dạng ax + b = 0:
(x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)
Giải phương trình: \({\left( {x - 1} \right)^2} = 5x - 11\)
\(\begin{array}{l}{\left( {x - 1} \right)^2} = 5x - 11\\ \Leftrightarrow {x^2} - 2x + 1 = 5x - 11\\ \Leftrightarrow {x^2} - 2x + 1 - 5x + 11 = 0\\ \Leftrightarrow {x^2} - 7x - 10 = 0\\ \Leftrightarrow (x - 5)(x - 2) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 2\end{array} \right.\end{array}\)
Giải các phương trình sau:
a)(2-3x)*(x+11)=(3x-2)*(2-5x)
b)(x+3)^3-9(x+3)=0
c)x^3+1=x(x+1)
Câu 1 Giải bất phương trình sau, biểu diễn tập nghiệm trên trục số
2x+4 > 5x -11
Câu 2 Giải phương trình
|x+10|=5x-2
2x + 4 > 5x - 11
<=> 2x - 5x > -11 - 4
<=> -3x > -15
<=> -3x : ( -3 ) < -15 : ( -3 )
<=> x < 5
Vậy tập nghiệm của bất phương trình là x < 5