Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Cao Đô
Xem chi tiết
Lê Song Phương
8 tháng 5 2022 lúc 8:20

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (*)

Pt (*) có \(\Delta'=\left(-1\right)^2-1.m=1-m\)

Để (d) cắt (P) tại 2 điểm phân biệt \(x_1,x_2\) thì pt (*) phải có 2 nghiệm phân biệt \(x_1,x_2\) \(\Leftrightarrow\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)

Khi \(m< 1\), áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)\(\Rightarrow y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2^2-2m=4-2m\)

Do đó để \(y_1+y_2+x_1^2x_2^2=6\left(x_1+x_2\right)\)\(\Leftrightarrow4-2m+m^2=6.2\)\(\Leftrightarrow m^2-2m-8=0\) (1)

pt (1) có \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)

Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}m_1=\dfrac{-\left(-1\right)+\sqrt{9}}{1}=4\\m_2=\dfrac{-\left(-1\right)-\sqrt{9}}{1}=-2\end{matrix}\right.\)

Như vậy để (d) cắt (P) tại 2 điểm có hoành độ và tung độ thỏa mãn yêu cầu đề bài thì \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

Lê Song Phương
8 tháng 5 2022 lúc 8:21

Mà do \(m< 1\) nên ta chỉ nhận trường hợp \(m=-2\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ và tung độ thỏa mãn đề bài thì \(m=-2\)

Nguyễn Minh Nhật
1 tháng 6 2022 lúc 23:44

Phương trình hoành độ giao điểm của (d) và (P) là:

x2=2x−m⇔x2−2x+m=0 (1)

Ta có: Δ′=1−m.

Điều kiện để (d) cắt (P) tại hai điểm phân biệt là phương trình hoành độ giao điểm của (d) và (P) có hai nghiệm phân biệt.

Suy ra 1−m>0⇔m<1 (*).

Khi đó x1x2 là các hoành độ giao điểm của (d) và (P) nên x1x2 là các nghiệm của phương trình hoành độ của (d) và (P).

Theo hệ thức Vi-et ta có: {x1+x2=2x1x2=m

Khi đó, y1+y2+x12x22=6(x1+x2).

⇔x12+x22+x12x22=6(x1+x2).

⇔(x1+x2)2−2x1x2+x12x22=6(x1+x2).

⇔4−2m+m2=12⇔m2−2m−8=0⇔[m=−2(tm(∗))m=4(ktm(∗))

Vậy m=−2 là giá trị cần tìm.

Phương trình hoành độ giao điểm của (d) và (P) là:

x2=2x−m⇔x2−2x+m=0 (1)

Ta có: Δ′=1−m.

Điều kiện để (d) cắt (P) tại hai điểm phân biệt là phương trình hoành độ giao điểm của (d) và (P) có hai nghiệm phân biệt.

Suy ra 1−m>0⇔m<1 (*).

Khi đó x1x2 là các hoành độ giao điểm của (d) và (P) nên x1x2 là các nghiệm của phương trình hoành độ của (d) và (P).

Theo hệ thức Vi-et ta có: {x1+x2=2x1x2=m

Khi đó, y1+y2+x12x22=6(x1+x2).

⇔x12+x22+x12x22=6(x1+x2).

⇔(x1+x2)2−2x1x2+x12x22=6(x1+x2).

⇔4−2m+m2=12⇔m2−2m−8=0⇔[m=−2(tm(∗))m=4(ktm(∗))

Vậy m=−2 là giá trị cần tìm.

Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2023 lúc 18:14

a: Để (d1) và (d2) cắt nhau thì \(2m+1\ne m+2\)

=>\(2m-m\ne2-1\)

=>\(m\ne1\)

b: Khi m=-1 thì (d1): \(y=\left(2-1\right)x+1=x+1\)

Khi m=-1 thì (d2): \(y=\left(1-2\right)x+2=-x+2\)

Vẽ đồ thị:

loading...

Phương trình hoành độ giao điểm là:

x+1=-x+2

=>x+x=2-1

=>2x=1

=>\(x=\dfrac{1}{2}\)

Thay x=1/2 vào y=x+1, ta được:

\(y=\dfrac{1}{2}+1=\dfrac{3}{2}\)

c:

(d1): y=(m+2)x+1

=>(m+2)x-y+1=0

Khoảng cách từ A(1;3) đến (d1) là:

\(d\left(A;\left(d1\right)\right)=\dfrac{\left|1\left(m+2\right)+3\cdot\left(-1\right)+1\right|}{\sqrt{\left(m+2\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{\left|m\right|}{\sqrt{\left(m+2\right)^2+1}}\)

Để d(A;(d1)) lớn nhất thì m+2=0

=>m=-2

Vậy: \(d\left(A;\left(d1\right)\right)_{max}=\dfrac{\left|-2\right|}{\sqrt{\left(-2+2\right)^2+1}}=\dfrac{2}{1}=2\)

Bùi Thúy Ngọc
13 tháng 12 2023 lúc 16:51

.

Bùi Thúy Ngọc
13 tháng 12 2023 lúc 16:55

.

Big City Boy
Xem chi tiết
Anh Phạm
Xem chi tiết
YangSu
25 tháng 4 2022 lúc 19:10

\(\dfrac{1}{2}x^2-\left(-2+1\right)x+\dfrac{-2-1}{2}=0\)

\(\Rightarrow\dfrac{1}{2}x^2+x-\dfrac{3}{2}=0\)

Tới đây dùng \(\Delta\) chứ, nếu bn lấy \(\dfrac{1}{2}\) đặt lm nhân tử chung thì ở đây hơi vô lí 

YangSu
25 tháng 4 2022 lúc 19:15

\(\Delta=b^2-4ac=1-4.\dfrac{1}{2}.\left(-\dfrac{3}{2}\right)=4>0\)

\(\Rightarrow\)Pt có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+2}{1}=1\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-2}{1}=-3\end{matrix}\right.\)

Thay \(x_1=1\) vào \(y=\dfrac{1}{2}x^2\Rightarrow y=\dfrac{1}{2}\)

Thay \(x_2=-3\) vào \(y=-x+\dfrac{3}{2}\Rightarrow y=\dfrac{9}{2}\)

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 19:45

b: Phương trình hoành độ giao điểm là:

\(x^2-2\left(m-1\right)x-m^2-2m=0\)

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(-m^2-2m\right)\)

\(=4m^2-8m+4+4m^2+8m=8m^2+4>0\)

Vậy: Phương trình luôn có hai nghiệm phân biệt

\(x_1^2+x_2^2+4x_1x_2=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+2x_1x_2=36\)

\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(-m^2-2m\right)=36\)

\(\Leftrightarrow4m^2-8m+4-2m^2-4m-36=0\)

\(\Leftrightarrow2m^2-12m-32=0\)

\(\Leftrightarrow\left(m-8\right)\left(m+2\right)=0\)

hay \(m\in\left\{8;-2\right\}\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2022 lúc 14:40

Gọi \(A\left(x_1;x_1^2\right)\) và \(B\left(x_2;x_2^2\right)\) là 2 điểm thuộc (P) và đối xứng qua M

Do A; B đối xứng qua M

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2.\left(-1\right)\\x_1^2+x_2^2=2.5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=-2-x_1\\x_1^2+x_2^2=10\end{matrix}\right.\)

\(\Rightarrow x_1^2+\left(-2-x_1\right)^2=10\)

\(\Rightarrow2x_1^2+4x_1-6=0\Rightarrow\left[{}\begin{matrix}x_1=1\\x_1=-3\end{matrix}\right.\)

Vậy 2 điểm đó là \(\left(1;1\right)\) và \(\left(-3;9\right)\)

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 19:25

Phương trình hoành độ giao điểm là:

\(x^2-\left(2m+1\right)x+m^2-1=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-1\right)\)

\(=4m^2+4m+1-4m^2+4=4m+5\)

Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-1< 0\)

hay -1<m<1

Nguyễn Ngọc Bảo Trâm
Xem chi tiết
michelle holder
Xem chi tiết
Neet
16 tháng 3 2017 lúc 22:57

gợi ý nè .

1) áp dụng bunya

2)thử nhân Pt 2 với 5 rồi trừ đi thử

3) đặt x3=a,y2=b

=> a2+3a+1=b2

đến đây có thể xét delta hoặc...

a2<a2+3a+1<a2+4a+4

=> a2<b2<(a+2)2

x,y nguyên nên a,b nguyên => b2=(a+1)2<=> a2+3a+1=a2+2a+1

<=> a=0 => b=1 => x=0 ,y=1

Neet
17 tháng 3 2017 lúc 19:59

câu 3:

đặt x3=a, y2=b.(a,b nguyên ) ta viết lại Pt a2+3a+1=b2

\(\Leftrightarrow4a^2+12a+4=4b^2\)

\(\Leftrightarrow\left(2a+3\right)^2-4b^2=5\)

\(\Leftrightarrow\left(2a-2b+3\right)\left(2a+2b+3\right)=5\)

vì a,b nguyên nên ta có bảng :

(2a-2b+3)(2a+2b+3)=5=1.5=5.1=(-1).(-5)=(-5).(-1)

.....

P/s: cách bên trên sẽ bị thiếu nghiệm , I can't explain it thế nào

Hello-Tôi yêu các bạn
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 12 2020 lúc 23:57
Khách vãng lai đã xóa