Cho d: y = -x + m, (P): \(y=x^2+\left(2-m\right)x-1\)và C(2;5). Tìm m để d cắt (P) tại hai điểm phân biệt là A và B sao cho tam giác ABC đều
Cho parabol $(P):\,\,y={{x}^{2}}$ và đường thẳng $d:\,y=2x-m$ (với $m$ là tham số). Tìm tất cả các giá trị của tham số $m$ để đường thẳng $\left( d \right)$ cắt parabol $(P)$ tại hai điểm phân biệt có $A\left( {{x}_{1}},{{y}_{1}} \right),\,\,B\left( {{x}_{2}},{{y}_{2}} \right)$ sao cho ${{y}_{1}}+{{y}_{2}}+{{x}_{1}}^{2}{{x}_{2}}^{2}=6\left( {{x}_{1}}+{{x}_{2}} \right).$
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (*)
Pt (*) có \(\Delta'=\left(-1\right)^2-1.m=1-m\)
Để (d) cắt (P) tại 2 điểm phân biệt \(x_1,x_2\) thì pt (*) phải có 2 nghiệm phân biệt \(x_1,x_2\) \(\Leftrightarrow\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)
Khi \(m< 1\), áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)\(\Rightarrow y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2^2-2m=4-2m\)
Do đó để \(y_1+y_2+x_1^2x_2^2=6\left(x_1+x_2\right)\)\(\Leftrightarrow4-2m+m^2=6.2\)\(\Leftrightarrow m^2-2m-8=0\) (1)
pt (1) có \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)
Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}m_1=\dfrac{-\left(-1\right)+\sqrt{9}}{1}=4\\m_2=\dfrac{-\left(-1\right)-\sqrt{9}}{1}=-2\end{matrix}\right.\)
Như vậy để (d) cắt (P) tại 2 điểm có hoành độ và tung độ thỏa mãn yêu cầu đề bài thì \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
Mà do \(m< 1\) nên ta chỉ nhận trường hợp \(m=-2\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ và tung độ thỏa mãn đề bài thì \(m=-2\)
Phương trình hoành độ giao điểm của và là:
(1)
Ta có: .
Điều kiện để cắt tại hai điểm phân biệt là phương trình hoành độ giao điểm của và có hai nghiệm phân biệt.
Suy ra (*).
Khi đó , là các hoành độ giao điểm của và nên , là các nghiệm của phương trình hoành độ của và .
Theo hệ thức Vi-et ta có:
Khi đó,
Vậy là giá trị cần tìm.
Phương trình hoành độ giao điểm của và là:
(1)
Ta có: .
Điều kiện để cắt tại hai điểm phân biệt là phương trình hoành độ giao điểm của và có hai nghiệm phân biệt.
Suy ra (*).
Khi đó , là các hoành độ giao điểm của và nên , là các nghiệm của phương trình hoành độ của và .
Theo hệ thức Vi-et ta có:
Khi đó,
Vậy là giá trị cần tìm.
Cho 2 đường thẳng
(d₁): y = \(\left(2+m\right)x+1\:\:\left(m\ne-2\right)\)
(d₂): y = \(\left(1+2m\right)x+2\:\left(m\ne-\dfrac{1}{2}\right)\)
a) Tìm m để (d₁) và (d₂) cắt nhau.
b) Với m = -1, vẽ (d₁) và (d₂) trên cùng một mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của 2 đường thẳng đó.
c) Tìm khoảng cách lớn nhất từ A(1;3) đến (d₁).
a: Để (d1) và (d2) cắt nhau thì \(2m+1\ne m+2\)
=>\(2m-m\ne2-1\)
=>\(m\ne1\)
b: Khi m=-1 thì (d1): \(y=\left(2-1\right)x+1=x+1\)
Khi m=-1 thì (d2): \(y=\left(1-2\right)x+2=-x+2\)
Vẽ đồ thị:
Phương trình hoành độ giao điểm là:
x+1=-x+2
=>x+x=2-1
=>2x=1
=>\(x=\dfrac{1}{2}\)
Thay x=1/2 vào y=x+1, ta được:
\(y=\dfrac{1}{2}+1=\dfrac{3}{2}\)
c:
(d1): y=(m+2)x+1
=>(m+2)x-y+1=0
Khoảng cách từ A(1;3) đến (d1) là:
\(d\left(A;\left(d1\right)\right)=\dfrac{\left|1\left(m+2\right)+3\cdot\left(-1\right)+1\right|}{\sqrt{\left(m+2\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{\left|m\right|}{\sqrt{\left(m+2\right)^2+1}}\)
Để d(A;(d1)) lớn nhất thì m+2=0
=>m=-2
Vậy: \(d\left(A;\left(d1\right)\right)_{max}=\dfrac{\left|-2\right|}{\sqrt{\left(-2+2\right)^2+1}}=\dfrac{2}{1}=2\)
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\). Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Đề bài : cho Parabol (P): y=1/2x^2 và đường thẳng (d):\(y=\left(m+1\right)x-\dfrac{m-1}{2}\)(x là ẩn , m là tham số ). tìm tọa độ giao điểm của p và d khi m = -2
Gỉai : Pt hoành độ giao điểm của P và d là \(\dfrac{1}{2}x^2-\left(m+1\right)x+\dfrac{m-1}{2}=0\)
Thay m=-2 vào pt ta đc \(\dfrac{1}{2}x^2-\left(-2+1\right)x+\dfrac{-2-1}{2}=0\)
\(\Rightarrow\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x-3\right)=0\)
\(\Rightarrow x^2+2x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-3=0\Rightarrow\left(x+\dfrac{1}{4}\right)^2=\dfrac{49}{16}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{6}{4}\\x=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{9}{8}\\y=2\end{matrix}\right.\)
Vậy ....
cho hỏi em sai chỗ nào vậy mn
\(\dfrac{1}{2}x^2-\left(-2+1\right)x+\dfrac{-2-1}{2}=0\)
\(\Rightarrow\dfrac{1}{2}x^2+x-\dfrac{3}{2}=0\)
Tới đây dùng \(\Delta\) chứ, nếu bn lấy \(\dfrac{1}{2}\) đặt lm nhân tử chung thì ở đây hơi vô lí
\(\Delta=b^2-4ac=1-4.\dfrac{1}{2}.\left(-\dfrac{3}{2}\right)=4>0\)
\(\Rightarrow\)Pt có 2 nghiệm phân biệt
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+2}{1}=1\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-2}{1}=-3\end{matrix}\right.\)
Thay \(x_1=1\) vào \(y=\dfrac{1}{2}x^2\Rightarrow y=\dfrac{1}{2}\)
Thay \(x_2=-3\) vào \(y=-x+\dfrac{3}{2}\Rightarrow y=\dfrac{9}{2}\)
Giải hộ mình câu c thôi nhoa!
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\)
a) Tìm tọa độ giao điểm của (d) và (P) với m=-1
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn: \(x_1^2+x_2^2+4x_1x_2=36\)
c) Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
b: Phương trình hoành độ giao điểm là:
\(x^2-2\left(m-1\right)x-m^2-2m=0\)
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(-m^2-2m\right)\)
\(=4m^2-8m+4+4m^2+8m=8m^2+4>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
\(x_1^2+x_2^2+4x_1x_2=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+2x_1x_2=36\)
\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(-m^2-2m\right)=36\)
\(\Leftrightarrow4m^2-8m+4-2m^2-4m-36=0\)
\(\Leftrightarrow2m^2-12m-32=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+2\right)=0\)
hay \(m\in\left\{8;-2\right\}\)
Cho \(\left(P\right):y=x^2\) và (d):\(y=2.\left(m-1\right)x+m^2+2m\). Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Gọi \(A\left(x_1;x_1^2\right)\) và \(B\left(x_2;x_2^2\right)\) là 2 điểm thuộc (P) và đối xứng qua M
Do A; B đối xứng qua M
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2.\left(-1\right)\\x_1^2+x_2^2=2.5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=-2-x_1\\x_1^2+x_2^2=10\end{matrix}\right.\)
\(\Rightarrow x_1^2+\left(-2-x_1\right)^2=10\)
\(\Rightarrow2x_1^2+4x_1-6=0\Rightarrow\left[{}\begin{matrix}x_1=1\\x_1=-3\end{matrix}\right.\)
Vậy 2 điểm đó là \(\left(1;1\right)\) và \(\left(-3;9\right)\)
Cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=\left(2m+1\right)x+1-m^2\) (với m là tham số). Tìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung
Phương trình hoành độ giao điểm là:
\(x^2-\left(2m+1\right)x+m^2-1=0\)
\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-1\right)\)
\(=4m^2+4m+1-4m^2+4=4m+5\)
Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-1< 0\)
hay -1<m<1
Cho phương trình : \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\left(1\right)\\x+\left(m-1\right)y=2\left(2\right)\end{matrix}\right.\) có nghiệm duy nhất (x;y)
a) Giải hệ phương trình khi m=3
b) Tìm hệ thức liên hệ giữa x và y ko phụ thuộc vào m
c) Trong trường hợp hệ có nghiệm duy nhất tìm giá trị của m thỏa mãn : 2x2 - 7y = 1
d) Tìm các giá trị của m để biểu thức \(\dfrac{2x-3y}{x+y}\) nhận giá trị nguyên
1) cho \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\) . tính M = \(x^2+y^2\)
2) tìm các cặp x,y thỏa mãn \(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
3) tìm các cặp x,y nguyên thỏa \(x^6+3x^3+1=y^4\)
gợi ý nè .
1) áp dụng bunya
2)thử nhân Pt 2 với 5 rồi trừ đi thử
3) đặt x3=a,y2=b
=> a2+3a+1=b2
đến đây có thể xét delta hoặc...
a2<a2+3a+1<a2+4a+4
=> a2<b2<(a+2)2
x,y nguyên nên a,b nguyên => b2=(a+1)2<=> a2+3a+1=a2+2a+1
<=> a=0 => b=1 => x=0 ,y=1
câu 3:
đặt x3=a, y2=b.(a,b nguyên ) ta viết lại Pt a2+3a+1=b2
\(\Leftrightarrow4a^2+12a+4=4b^2\)
\(\Leftrightarrow\left(2a+3\right)^2-4b^2=5\)
\(\Leftrightarrow\left(2a-2b+3\right)\left(2a+2b+3\right)=5\)
vì a,b nguyên nên ta có bảng :
(2a-2b+3)(2a+2b+3)=5=1.5=5.1=(-1).(-5)=(-5).(-1)
.....
P/s: cách bên trên sẽ bị thiếu nghiệm , I can't explain it thế nào
cho các số thực x,y thỏa mãn\(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
c/m\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)