Tìm x, y biết
\(x+y=x:y=5\left(x-y\right)\)
\(\text{1. Tìm x,y,z, biết:}\)
\(x+y=x:y=3\left(x-y\right)\)
Lời giải:
$x+y=\frac{x}{y}$
$y(x+y)=x$
$x(y-1)+y^2=0$
$x(y-1)=-y^2$
Nếu $y=1$ thì $x+1=x$ (vô lý). Do đó $y\neq 1$
$\Rightarrow x=\frac{y^2}{1-y}$.
Khi đó:
$x+y=3(x-y)$
$\Leftrightarrow \frac{y^2}{1-y}+y=\frac{3y^2}{1-y}-3y$
$\Leftrightarrow \frac{y^2}{1-y}=2y$
$\Leftrightarrow y(\frac{y}{1-y}-2)=0$. Rõ ràng $y\neq 0$ nên $\frac{y}{1-y}-2=0$
$\Leftrightarrow y=2(1-y)\Leftrightarrow y=\frac{2}{3}$
$x=\frac{y^2}{1-y}=\frac{4}{3}$
Tìm x,y biết:\(x-y=2\left(x+y\right)=x:y\)
tìm số hữu tỉ x,y,z biết:
a. \(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\)và \(x+2=y+1=z+3\)
b. \(x+y=xy=x:y\)( y khác 0 )
c. \(x-y=xy=x:y\) ( y khác 0 )
d. \(x\left(x+y+z\right)=-5\) ; \(y\left(x+y+z\right)=9\) ; \(z\left(x+y+z\right)=5\)
b)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0x=-1(L)
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy y=-1 x=1/2
c)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x-1=x
=>0x=1(L)
*)y=-1
=>x+1=-x
=>2x=-1
=>x=-1/2
Vậy y=-1 x=-1/2
d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
=>(x+y+z)2=9
=>x+y+z=3 hoặc x+y+z=-3
*)x+y+z=3
=>x=-5:3=-5/3
y=9:3=3
z=5:3=5/3
*)x+y+z=-3
=>x=-5:(-3)=5/3
y=9:(-3)=-3
z=5:(-3)=-5/3
Bài 1: Tìm x,y,z biết:
a) \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
b) \(x+y=x:y=5\left(x-y\right)\)
a) Ta có: \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|\ge0\)
Mà \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\2-3y=0\\3-4z=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\3y=2\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2};y=\dfrac{2}{3};z=\dfrac{3}{4}\)
Tìm x; y
\(x-y=x:y=2\left(x+y\right)\)
Tìm hai số hữu tỉ x và y\(\left(y\ne0\right)\)biết rằng:
\(x-y=xy=x:y\)
Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)
=> \(y^2=1\) => \(y=\pm1\)
Thay \(y=1\) vào \(x-y=x.y\) ta có : \(x-1=x.1\)
=> \(x-1=x\)=> \(0x=1\)( vô lý) => loại
Thay \(y=-1\) vào \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)
=> \(x+1=-x\)=> \(2x=-1\)
=> \(x=\frac{-1}{2}\)
\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
Tìm x,y thuộc Z biết:
a, \(2^{x+y}=2^x+2^y\)
b, \(x+y=x.y=x:y\left(y\ne0\right)\)
Giải nhanh giùm mình!!!!!
b) x+y=x.y
=) x=x.y-y=y.(x-1)
=) x:y=x-1 (1)
Vì x:y=x+y (2)
Từ (1) và (2) =) x-1=x+y
=) x-x=y+1
=) 0=y+1 =) y=0-1=-1
Thay vào (2) =) x:(-1)=x+(-1)
=) -x=x+(-1)
=) -x-x=-1
=)-2x=-1=)x=\(\frac{-1}{-2}=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\)và y=-1
Còn phần a mình không biết làm.
Bài 1: Tìm x,y biết a) \(x:y=5:\left(-3\right)vàx-y=-16\)
Có \(x:y=5:\left(-3\right)\Rightarrow\frac{x}{y}=\frac{5}{-3}\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-3}=\frac{x-y}{5-\left(-3\right)}=\frac{-16}{8}=-2\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=-2\Rightarrow x=\left(-2\right)\cdot5=-10\\\frac{y}{-3}=-2\Rightarrow y=\left(-2\right)\left(-3\right)=6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-10;6\right)\)
Tìm x,y,z
a)\(\frac{x}{4}-\frac{1}{9}=\frac{1}{2}\left(xthuộcZ\right)\)
b)\(x+y=xy=x:y\left(với\right)xykhác0\)
c)\(x-y=xy=xy\left(ykhac0\right)\)
d)\(\left(x+1\right)\left(x-2\right)< 0\)
e)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
f)\(x\left(x+y+z\right)=-5\)
\(y\left(x+y+z\right)=9\)
\(z\left(x+y+z\right)=5\)
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3