Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hot Girl
Xem chi tiết

\(a)2xy+4y-x=5\)

\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)

\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)

\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)

\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)

\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét từng trường hợp :

\(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)\(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)\(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)\(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)

Vậy

\(2x+y=xy-3\)

\(\Leftrightarrow xy-2x-y=3\)

\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)

\(\Leftrightarrow x\left(y-2\right)-y+2=5\)

\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)

\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)

\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét các trường hợp như câu trên và kết luận

Đặng Tú Phương
24 tháng 1 2019 lúc 19:29

\(2xy+4y-x=5\)

\(\Rightarrow2y\left(x+2\right)-\left(x+2\right)=5-2\)

\(\Rightarrow\left(x+2\right)\left(2y-1\right)=3\)

\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Ta xét bảng 

x+21-13-3
2y-13-31-1
x-1-31-5
y2-11

0

Vậy.......................................................

\(2x+y=xy-3\)

\(\Rightarrow2x+y-xy=3\)

\(2x-2+y\left(x-1\right)=3-2\)

\(\Rightarrow2\left(x-1\right)+y\left(x-1\right)=1\)

\(\Rightarrow\left(2+y\right)\left(x-1\right)=1\)

\(\Rightarrow\left(x-1\right);\left(2+y\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

Xét bảng 

x-11-1
2+y1-1
x20
y-1-3 

Vậy..........................

Trần Thị Nhung
Xem chi tiết
Gaming 4K
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 14:03

a) Ta có: \(x^2-y^2-2x+2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

b) Ta có: \(2x+2y-x^2-xy\)

\(=2\left(x+y\right)-x\left(x+y\right)\)

\(=\left(x+y\right)\left(2-x\right)\)

c) Ta có: \(x^2-25+y^2+2xy\)

\(=\left(x+y\right)^2-25\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

d) Ta có: \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

e) Ta có: \(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

f) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

Đàm Tùng Vận
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 10 2021 lúc 10:06

\(2x^2+y^2+2x-2xy+5-4y=0\)

\(\Leftrightarrow\left[y^2-2y\left(x+2\right)+\left(x+2\right)^2\right]+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(y-x-2\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y-x-2=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

\(S=\left(x+2\right)^2+\left(y-1\right)^2=\left(1+2\right)^2+\left(3-1\right)^2\)

\(=3^2+2^2=13\)

Tư Linh
Xem chi tiết
ILoveMath
12 tháng 11 2021 lúc 7:21

\(x^2+2y^2-2xy+y=0\) đề phải như thế này chứ

Kha Nguyễn
Xem chi tiết
Black_sky
14 tháng 3 2020 lúc 14:32

\(x^2-y^2=5\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=5\)

=> x-y và x+y \(\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)

Ta có bảng sau:

x-y-5-115
x+y-1-551
x-3-333
y2-22-2

Vậy (x,y)=(-3,2),(-3,-2),(3,2),(3,-2)

Khách vãng lai đã xóa
Kha Nguyễn
18 tháng 3 2020 lúc 15:16

xin lỗi nhưng mình ghi nhầm đề:

Tìm nghiệm nguyên của PT; \(x^2-2y^2\text{=}5\)

Khách vãng lai đã xóa
Phương Nam
Xem chi tiết
Đức Thắng
17 tháng 9 2015 lúc 22:50

=> x^2 + 2xy + y^2 + 4x + 4y + x^2 - 2x + 5 = 0 

=>( x+  y)^2 + 4 (x+y) + 4 + x^2 - 2x + 1  = 0 

=> ( x+  +y + 2 )^2 + ( x- 1 )^2 = 0 

=> x + y+  2 = 0 và x - 1 = 0 

=> x = 1 và 1 + y + 2 = 0 

=> x = 1 và y = -3 

Nguyễn Phương Anh
Xem chi tiết
Đoàn Đức Hà
19 tháng 7 2021 lúc 11:10

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

Khách vãng lai đã xóa
Bankai
Xem chi tiết
Đặng Tú Phương
10 tháng 1 2019 lúc 19:30

\(2xy+2x-y=8\)

\(\Rightarrow2x\left(y+1\right)-\left(y+1\right)=8-1\)

\(\Rightarrow\left(y+1\right)\left(2x-1\right)=7\)

\(\Rightarrow\left(2x-1\right)\left(y+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(TH1:\hept{\begin{cases}2x-1=1\\y+1=7\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}}\)  \(TH2:\hept{\begin{cases}2x-1=-1\\y+1=-7\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-8\end{cases}}}\)

\(TH3:\hept{\begin{cases}2x-1=7\\y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=0\end{cases}}}\)         \(TH4:\hept{\begin{cases}2x-1=-7\\y+1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\=0\end{cases}}}\)      

Vậy \(\left(x;y\right)\in\left\{\left(1;6\right);\left(0,-8\right);\left(4;0\right);\left(-4;0\right)\right\}\)