giúp mk với: tính
S=1+2+2mũ 2+2 mũ 3+...+20 mũ 20
1) tìm x biết:
a) 2.7mũ x=98
b)5.6mũ x =180
c) (x-4)mũ x=16
d) (x-1 )mũ 3=64
e) 2 mũ x + 2mũ x + 2 =20
Chú ý: mũ là luỹ thừa
Giúp mk giải nhanh trog đêm nay nha,dag gấp dữ lắm
Vu Ha Lan Vy
a) 2.7x = 98
2.7x = 98
7x = 98 : 2
7x = 49
7x = 72
x = 2
^^ Học tốt!
s=2mũ 2 +4 mũ 2 +6 mũ 2 +.....+20 mũ 2
4x - 20 = 2mũ 5:2 mũ 3
4x-20=2^5 : 2^3
4x-20=2^2
4x=2^2+20
4x=24
x=24 : 6
x=4
HT
Mình nhầm đoạn cuối nhé
x=24:4
x=6
xin lỗi bạn!
A=2 mũ 1 +2 mũ 2 +2 mũ 3 +2 mũ 4 +2 mũ 5 +2 mũ 6 +....+2mũ 60.Chứng minh rằng A chia hết cho 21,15
giúp mình với
bn ơi chia hết cho 21 và 15 hay là chia hết cho số 21,15 vậy?
Chứng minh A chia hết cho \(21\) \(A\) được viết dưới dạng tổng: \(A=2^{1}+2^{2}+2^{3}+\dots +2^{60}\). Để chứng minh \(A\) chia hết cho \(21\), cần chứng minh \(A\) chia hết cho \(3\) và \(7\). Chứng minh A chia hết cho \(3\) \(A\) được nhóm thành các bộ \(2\) số hạng: \(A=(2^{1}+2^{2})+(2^{3}+2^{4})+\dots +(2^{59}+2^{60})\). \(A=2(1+2)+2^{3}(1+2)+\dots +2^{59}(1+2)\). \(A=2\cdot 3+2^{3}\cdot 3+\dots +2^{59}\cdot 3\). \(A=3(2+2^{3}+\dots +2^{59})\). Vì \(A\) có thừa số \(3\), nên \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(7\) \(A\) được nhóm thành các bộ \(3\) số hạng: \(A=(2^{1}+2^{2}+2^{3})+(2^{4}+2^{5}+2^{6})+\dots +(2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2})+2^{4}(1+2+2^{2})+\dots +2^{58}(1+2+2^{2})\). \(A=2\cdot 7+2^{4}\cdot 7+\dots +2^{58}\cdot 7\). \(A=7(2+2^{4}+\dots +2^{58})\). Vì \(A\) có thừa số \(7\), nên \(A\) chia hết cho \(7\). Vì \(A\) chia hết cho \(3\) và \(A\) chia hết cho \(7\), và \(3\) và \(7\) là hai số nguyên tố cùng nhau, nên \(A\) chia hết cho \(3\cdot 7=21\). Chứng minh A chia hết cho \(15\) Để chứng minh \(A\) chia hết cho \(15\), cần chứng minh \(A\) chia hết cho \(3\) và \(5\). Chứng minh A chia hết cho \(3\) Phần này đã được chứng minh ở trên. \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(5\) \(A\) được nhóm thành các bộ \(4\) số hạng: \(A=(2^{1}+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8})+\dots +(2^{57}+2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2}+2^{3})+2^{5}(1+2+2^{2}+2^{3})+\dots +2^{57}(1+2+2^{2}+2^{3})\). \(A=2(1+2+4+8)+2^{5}(1+2+4+8)+\dots +2^{57}(1+2+4+8)\). \(A=2\cdot 15+2^{5}\cdot 15+\dots +2^{57}\cdot 15\). \(A=15(2+2^{5}+\dots +2^{57})\). Vì \(A\) có thừa số \(15\), nên \(A\) chia hết cho \(15\). Kết luận \(A\) chia hết cho \(21\) và \(A\) chia hết cho \(15\).
E=1/2+1/2mũ 2 +1/2 mũ 3+...+1 mũ 60
các bạn giúp mik với nha
cảm ơn trc
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{59}}.\)
\(E=2E-E=1-\frac{1}{2^{60}}\)
Chứng minh : 1/2mũ 2+1/2mũ 3+1/2mũ 4+....1/2 mũ n <1
giúp mk ngay mk cần gấp
Gọi \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) + ... + \(\frac{1}{2^n}\) là A
Ta có :
\(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{2^3}\)<\(\frac{1}{2.3}\)
\(\frac{1}{2^4}\)<\(\frac{1}{3.4}\)
....
\(\frac{1}{2^n}\)<\(\frac{1}{\text{(n - 1) . n}}\)
❄ Nên :
A < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{\text{(n - 1) . n}}\)
A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
A < \(1-\frac{1}{n}\) < 1
Vậy A < 1
\(\frac{1}{2^2}\)\(\frac{1}{2^2}\)
Bài 1 :tính các phép tính
a)(27-7.4) mũ 15+(-5)×(-3)
b)38:(-3)mũ 2-2mũ 3
c)(-16) mũ 20 :16 mũ 19+25:(-5) mũ 2
Bài 2 tính nhanh
a) -37×173+37×(-27)
b)38×(-129)+(-75)×14
c) 161×(-83+141)-141×(161-83)
dùng máy tính nha b
chúc hok tốt
mình bắt đầu thấy loạn rồi đấy
2.6 mũ 9 - 2mũ 5 . 18 mũ 4/ 2 mũ 2 .6 mũ 8
mọi người giúp mk với!!! mai mk cần rồi !! cảm ơn trước !!!
A=2 mũ 0 +2 mũ 1+2 mũ 2+ 2mũ 3 + 2 mũ 4+2 mũ 5 +...+ 2 mũ 100
Tìm số dư của phép chia tổng A cho 3
Cứu tui với
\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)
Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)
\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1
hay số dư của phép chia \(A\) cho \(3\) là \(1\).
A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100
A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)
A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)
A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3
A=1 +3 .(2+2^3+..+2^99)
=> A:3 dư 1