chứng minh 5+52+53+...+5100 chia hết cho 30
ai làm dc like cho nhanh và có lời giải
cho C=5+52+53+54+...+520 chứng minh rằng:
a)C chia hết cho 5 b) C chia hết cho 6 c) C chia hết cho 13
\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)
nên \(C⋮5\)
\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)
\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)
nên \(C⋮6\)
\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)
\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)
\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)
\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)
Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)
nên \(C⋮13\)
#\(Toru\)
a)Chứng minh rằng 2002 mũ n nhân 2005 mũ n + 1 chia hết cho 1,5 và 10
b)6 mũ 1000 - 2 chia hết cho 5
Ai nhanh mình like cho,lời giải chi tiết nha mọi người
Chứng minh rằng C = 5 + 5 2 + 5 3 + ... + 5 8 chia hết cho 30
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 5 + 5 2 + 5 3 + ... + 5 8 = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 .30 + 5 4 .30 + 5 6 .30 = 30. 1 + 5 2 + 5 4 + 5 6 Áp dụng tính chất chia hết của một tích ta có: 30 ⋮ 30 ⇒ 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 ⇒ C = 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 |
Chứng minh rằng C = 5 + 5 2 + 5 3 + . . . + 5 8 chia hết cho 30
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Chứng minh rằng:
a) A = 3 + 33 + 33 + ...+ 399 chia hết cho 13
b) B = 5 + 52 + 53 + ... + 550 chia hết cho 6
Sửa câu a
a)Ta có:
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)
\(A=39+...+3^{96}.39\)
\(A=39.\left(1+...+3^{96}\right)\)
Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13
Vậy A \(⋮\) 13
_________
b)Ta có:
\(B=5+5^2+5^3+...+5^{50}\)
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)
\(B=30+5^2.30+...+5^{48}.30\)
\(B=30.\left(1+5^2+...+5^{48}\right)\)
Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6
Vậy B \(⋮\) 6
a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)
=3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13
b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)
=5x6+...+549x6=6(5+..+549)⋮6.
1)Cho S = 1 - 5 + 52 - 53 + ... + 598 - 599
a) Tính S
b) CMR : 5100 chia cho 6 dư 1
Bài 1:
a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)
=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(6S=-5^{100}+1\)
=>\(S=\dfrac{-5^{100}+1}{6}\)
b: S=1-5+52-53+...+598-599 là số nguyên
=>\(\dfrac{-5^{100}+1}{6}\in Z\)
=>\(-5^{100}+1⋮6\)
=>\(5^{100}-1⋮6\)
=>\(5^{100}\) chia 6 dư 1
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Cho S = 1 - 5 + 52 - 53 +.... + 598 - 599
a)Tính S b)CMR: 5100 chia cho 6 dư 1
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
e đang cần gấp, có ai đến giúp e ko?
\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)