Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 15:20

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 15:23

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 15:25

\(3,ĐK:x\ge-1\\ PT\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)=5\sqrt{x^3+1}\) 

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow3b^2-2a^2=5ab\\ \Leftrightarrow2a^2+5ab-3b^2=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\a=-3b\left(vn\right)\end{matrix}\right.\Leftrightarrow a=2b\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\\x=\dfrac{5-\sqrt{37}}{2}\end{matrix}\right.\left(\text{giống bài 2}\right)\)

Loan Tran
Xem chi tiết
HT.Phong (9A5)
21 tháng 9 2023 lúc 16:30

B2: a) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{1}{2}-x\right)\)

\(=-\left(x+\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)\)

\(=-x^2+\dfrac{1}{4}\)

b) \(\left(3x-2y\right)\left(3x+2y\right)\)

\(=\left(3x\right)^2-\left(2y\right)^2\)

\(=9x^2-4y^2\)

c) \(\left(x-3\right)\left(3+x\right)\)

\(=x^2-3^2\)

\(=x^2-9\)

d) \(x^2+6x+9\)

\(=x^2+2\cdot3\cdot x+3^2\)

\(=\left(x+3\right)^2\)

e) \(9x^2-6x+1\)

\(=\left(3x\right)^2-2\cdot3x\cdot1+1^2\)

\(=\left(3x-1\right)^2\)

f) \(x^2y^2+xy+\dfrac{1}{4}\)

\(=\left(xy\right)^2+2\cdot\dfrac{1}{2}\cdot xy+\left(\dfrac{1}{2}\right)^2\)

\(=\left(xy+\dfrac{1}{2}\right)^2\)

g) \(\left(x-y\right)^2+6\left(x-y\right)+9\)

\(=\left(x-y\right)^2+2\cdot3\cdot\left(x-y\right)+3^2\)

\(=\left(x-y+3\right)^2\)

h) \(x^2+8x+16\)

\(=x^2+2\cdot4\cdot x+4^2\)

\(=\left(x+4\right)^2\)

i) \(9x^2-24x+16\)

\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)

\(=\left(3x-4\right)^2\)

k) \(x^2-3x+\dfrac{9}{4}\)

\(=x^2-2\cdot\dfrac{3}{2}\cdot x+\left(\dfrac{3}{2}\right)^2\)

\(=\left(x-\dfrac{3}{2}\right)^2\)

l) \(4x^2y^4-4xy^3+y^2\)

\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)

\(=\left(2xy^2-y\right)^2\)

m) \(9x^2-6x+1\)

\(=\left(3x\right)^2-2\cdot3x\cdot1+1\)

\(=\left(3x-1\right)^2\)

Nguyễn Tường Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 9:34

4:

a: Xét ΔEFA và ΔAMC có

góc EFA=góc AMC(=góc EIM)

góc EAF=góc ACM

=>ΔEFA đồng dạng với ΔAMC

=>EF/AM=EA/AC

=>EF*AC=AM*EA

b: ΔEFA đồng dạng với ΔAMC

=>S EFA/S AMC=(EF/AM)^2=1/9

=>S EFA=1/9*S AMC

mà S AMC=1/2*S ABC

nên S EFA=1/9*1/2*S ABC=1/18*S ABC

Phuong Linh
Xem chi tiết
Trần Phương Linh
12 tháng 6 2023 lúc 18:53

=(9/25 + 16/25) + ( 2/11 + 9/11)+ (10/17 + 7/17)

= 1    +     1       +          1

= 3

Toán này đâu khó!

phùng thị hoài phương
12 tháng 6 2023 lúc 18:58

1=1=1=3

 

lynguyenmnhthong
12 tháng 6 2023 lúc 19:35

\(\dfrac{9}{25}+\dfrac{2}{11}+\dfrac{10}{17}+\dfrac{16}{25}+\dfrac{9}{11}+\dfrac{7}{17}\)

\(=\left(\dfrac{9}{25}+\dfrac{16}{25}\right)+\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\left(\dfrac{10}{17}+\dfrac{7}{17}\right)\)

\(=1+1+1\)

\(=3\)

Lê Bảo Trân
Xem chi tiết
Hoàng Đức
9 tháng 3 2021 lúc 21:53

\(\frac{7}{x}=\frac{y}{27}=-\frac{42}{54}\)

\(\Leftrightarrow\frac{7}{x}=\frac{y}{27}=-\frac{7}{9}\)

Có \(\frac{7}{x}=-\frac{7}{9}\)

\(\Leftrightarrow x=-9\)

Lại có \(\frac{y}{27}=-\frac{7}{9}\)

\(\Leftrightarrow x=-21\)

Khách vãng lai đã xóa
Nguyễn Phương  Thảo
9 tháng 3 2021 lúc 21:53

X= -9, Y= -21   CHƯA CHẮC ĐÂY ĐẤY

Khách vãng lai đã xóa
Cửu Long Chảo
9 tháng 3 2021 lúc 22:08

Ta có:

7/x = -42/54 \(\Rightarrow\) x =  -9 (vì 7. 54 = 378 ; 378 :(-42) = -9

7/-9 = y/27   \(\Rightarrow\)y =  -21 (vì 7.27 = 189 ; 189 : (-9) = -21

                                                   Vậy x = -9 ; y = -21.

Khách vãng lai đã xóa
Nhi Cấn Ngọc Tuyết
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 7:19

Bài 5:

a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}\approx90^0-37^0=53^0\)

b, Áp dụng HTL: \(S_{AHC}=\dfrac{1}{2}AH\cdot HC=\dfrac{1}{2}\cdot\dfrac{AB\cdot AC}{BC}\cdot\dfrac{AC^2}{BC}=\dfrac{1}{2}\cdot\dfrac{12}{5}\cdot\dfrac{9}{5}=\dfrac{54}{25}\left(cm^2\right)\)

c, Vì AD là p/g nên \(\dfrac{DH}{DB}=\dfrac{AH}{AB}\)

Mà \(AC^2=CH\cdot BC\Leftrightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)

Mà \(AH\cdot BC=AB\cdot AC\Leftrightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\)

Vậy \(\dfrac{DH}{DB}=\dfrac{HC}{AC}\)

 

Vũ Mai Linh
Xem chi tiết
Nhi Cấn Ngọc Tuyết
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 7:08

Bài 1:

\(a,A=6\sqrt{2}-6\sqrt{2}+2\sqrt{5}=2\sqrt{5}\\ b,B=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{3}+\sqrt{2}\\ c,=2\sqrt{3}-6\sqrt{3}+15\sqrt{3}-4\sqrt{3}=7\sqrt{3}\\ d,=1+6\sqrt{3}-\sqrt{3}-1=5\sqrt{3}\\ e,=4\sqrt{2}+\sqrt{2}-6\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

Bài 2:

\(a,ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow\sqrt{2x-3}=5\Leftrightarrow2x-3=25\Leftrightarrow x=14\\ b,PT\Leftrightarrow x^2=\sqrt{\dfrac{98}{2}}=\sqrt{49}=7\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\left(\sqrt{x+3}+1>0\right)\\ \Leftrightarrow x=3\\ d,ĐK:x\ge1\\ PT\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\\ \Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(tm\right)\\ e,PT\Leftrightarrow2x-1=16\Leftrightarrow x=\dfrac{17}{2}\\ f,PT\Leftrightarrow\left|2x-1\right|=\sqrt{3}-1\Leftrightarrow\left[{}\begin{matrix}2x-1=\sqrt{3}-1\\2x-1=1-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}}{2}\\x=\dfrac{2-\sqrt{3}}{2}\end{matrix}\right.\)

 

Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 7:13

Bài 3:

\(a,Q=\dfrac{1+5}{3-1}=3\\ b,P=\dfrac{x+\sqrt{x}-6+x-2\sqrt{x}-3-x+4\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-3}\\ c,M=\dfrac{\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{3-\sqrt{x}}{\sqrt{x}+5}=\dfrac{-\sqrt{x}}{\sqrt{x}+5}\)

Vì \(-\sqrt{x}\le0;\sqrt{x}+5>0\) nên \(M< 0\)

Do đó \(\left|M\right|>\dfrac{1}{2}\Leftrightarrow M< -\dfrac{1}{2}\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-\sqrt{x}-5}{2\left(\sqrt{x}+5\right)}< 0\Leftrightarrow\sqrt{x}-5< 0\left(\sqrt{x}+5>0\right)\\ \Leftrightarrow0\le x< 25\)

Bài 4:

\(a,A=\dfrac{16+2\cdot4+5}{4-3}=29\\ b,B=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ c,P=\dfrac{x+2\sqrt{x}+5}{\sqrt{x}-3}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{x+2\sqrt{x}+5}{\sqrt{x}+1}\\ P=\dfrac{\left(\sqrt{x}+1\right)^2+4}{\sqrt{x}+1}=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}\\ P\ge2\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{4}{\sqrt{x}+1}}=2\sqrt{4}=4\\ P_{min}=4\Leftrightarrow\left(\sqrt{x}+1\right)^2=4\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow x=1\left(tm\right)\)

Tiu Lươn 👑
Xem chi tiết
Mai Thùy Trang
2 tháng 7 2021 lúc 22:34

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

    \(=\left[\dfrac{x+2}{\sqrt{x^3}-1}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x^3}-1}-\dfrac{x+\sqrt{x}+1}{\sqrt{x^3}-1}\right]:\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

    \(=\left(\dfrac{x+2+x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}-1}{\sqrt{x^3}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

    \(=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

    \(=1\)

\(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\dfrac{1}{2a\sqrt{a}}\)

    \(=\left[\dfrac{\left(\sqrt{a}+1\right)^2}{a-1}-\dfrac{\left(\sqrt{a}-1\right)^2}{a-1}+\dfrac{4\sqrt{a}\left(a-1\right)}{a-1}\right].\dfrac{1}{2a\sqrt{a}}\)

\(=\left(\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}\right).\dfrac{1}{2a\sqrt{a}}\)

\(=\dfrac{4a\sqrt{a}}{a-1}.\dfrac{1}{2a\sqrt{a}}\)

\(=\dfrac{2}{a-1}\)