Tìm các giới hạn sau :
a) \(\lim\limits\dfrac{6n-1}{3n+2}\)
b) \(\lim\limits\dfrac{3n^2+n-5}{2n^2+1}\)
c) \(\lim\limits\dfrac{3^n+5.4^n}{4^n+2^n}\)
d) \(\lim\limits\dfrac{\sqrt{9n^2-n+1}}{4n-2}\)
Tìm các giới hạn sau :
a) \(\lim\limits\dfrac{6n-1}{3n+2}\)
b) \(\lim\limits\dfrac{3n^2+n-5}{2n^2+1}\)
c) \(\lim\limits\dfrac{3^n+5.4^n}{4^n+2^n}\)
d) \(\lim\limits\dfrac{\sqrt{9n^2-n+1}}{4n-2}\)
a) lim = lim = = 2.
b) lim = lim = .
c) lim = lim = 5.
d) lim = lim == .
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{5n^3-3n^2+1}{1-3n^3}\)
b) \(\lim\limits\dfrac{-9n+5}{3n-3}\)
`a)lim[5n^3-3n^2+1]/[1-3n^3]`
`=lim[5-3/n+1/[n^3]]/[1/[n^3]-3]`
`=5/[-3]=-5/3`
_____________________________
`b)lim[-9n+5]/[3n-3]`
`=lim[-9+5/n]/[3-3/n]`
`=[-9]/3=-3`
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{\sqrt[3]{n^6-7n^3-5n+8}}{n+12}\)
b) \(\lim\limits\dfrac{1}{\sqrt{3n+2}-\sqrt{2n+1}}\)
c) \(\lim\limits\dfrac{4.3^n+7^{n+1}}{2.5^n+7^n}\)
a.
\(A=\lim\frac{\sqrt[3]{n^6-7n^3-5n+8}}{n+12}=\lim \frac{\sqrt[3]{\frac{n^6-7n^3-5n+8}{n^3}}}{\frac{n+12}{n}}=\lim \frac{\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}}{1+\frac{12}{n}}\)
Ta thấy:
\(\lim\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}=\infty \)
\(\lim (1+\frac{12}{n})=1\)
Suy ra $A=\infty$
b.
\(B=\lim\frac{1}{\sqrt{3n+2}-\sqrt{2n+1}}=\lim \frac{1}{\frac{3n+2-(2n+1)}{\sqrt{3n+2}+\sqrt{2n+1}}}=\lim \frac{\sqrt{3n+2}+\sqrt{2n+1}}{n+1}\)
\(=\lim \frac{\sqrt{\frac{3n+2}{n}}+\sqrt{\frac{2n+1}{n}}}{\frac{n+1}{\sqrt{n}}}=\lim \frac{\sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}}}{\sqrt{n}+\frac{1}{\sqrt{n}}}\)
Ta thấy:
\(\lim( \sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}})=\sqrt{3}+\sqrt{2}>0\)
\(\lim (\sqrt{n}+\frac{1}{\sqrt{n}})=\infty\)
$\Rightarrow B=\infty$
c.
\(C=\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{4(\frac{3}{7})^n+7}{2(\frac{5}{7})^n+1}\)
Ta thấy:
\(\lim [4(\frac{3}{7})^n+7]=4.0+7=7\) với $|\frac{3}{7}|<1$
\(\lim [2(\frac{5}{7})^n+1]=2.0+1=1\) với $|\frac{5}{7}|<1$
$\Rightarrow C=\frac{7}{1}=7$
tính giới hạn
1.\(\lim\limits\left(n^3+4n^2-1\right)\)
2.\(lim\dfrac{\left(n+1\right)\sqrt{n^2-n+1}}{3n^2+n}\)
3.\(lim\dfrac{1+2+....+n}{2n^2}\)
4.\(lim\dfrac{3^n-4.2^{n-1}-10}{7.2^n+4^n}\)
1.
\(\lim (n^3+4n^2-1)=\infty\) khi $n\to \infty$
2.
\(\lim\limits_{n\to -\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to -\infty}\frac{-\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to -\infty}\frac{-(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{-1}{3}\)
\(\lim\limits_{n\to +\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to +\infty}\frac{\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to +\infty}\frac{(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{1}{3}\)
3.
\(\lim \frac{1+2+...+n}{2n^2}=\lim \frac{n(n+1)}{4n^2}=\lim \frac{n^2+n}{4n^2}\\ =\lim (\frac{1}{4}+\frac{1}{4n})=\frac{1}{4}\)
4.
\(\lim \frac{3^n-4.2^{n-1}-10}{7.2^n+4^n}=\lim \frac{(\frac{3}{4})^n-(\frac{2}{4})^{n-1}-\frac{10}{4^n}}{7(\frac{2}{4})^n+1}\\ =\lim \frac{(\frac{3}{4})^n-(\frac{1}{2})^{n-1}-\frac{10}{4^n}}{7(\frac{1}{2})^n+1}\\ =\frac{0-0-0}{7.0+1}=0\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
1: \(-1< =cosx< =1\)
=>\(-3< =3\cdot cosx< =3\)
=>\(y\in\left[-3;3\right]\)
2:
TXĐ là D=R
3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)
\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
4:
\(L=lim\left(3n^2+5n-3\right)\)
\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)
5:
\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)
\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)
\(1,y=3cosx\)
\(+TXD\) \(D=R\)
Có \(-1\le cosx\le1\)
\(\Leftrightarrow-3\le3cosx\le3\)
Vậy có tập giá trị \(T=\left[-3;3\right]\)
\(2,y=cosx\)
\(TXD\) \(D=R\)
\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))
\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)
\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)
\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}=\lim\limits_{n\rightarrow\infty}\dfrac{2n\left(1-\dfrac{4}{n}\right)}{n\left(1-\dfrac{1}{n}\right)}=2\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n^3\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}=\dfrac{1}{4n}=\infty\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)=\lim\limits_{n\rightarrow\infty}n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^2}+\dfrac{4}{n^5}\right)=-2n^5=-\infty\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-6n^5+3n^3-1}{n^4-8n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-5n^7+8n^5-n}{5n^6-2n}\)
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{2n^2+5}{-3n^2-3}\)
b) \(lim\left(-5n^3-2n^2+5n-6\right)\)
`a)lim[2n^2+5]/[-3n^2-3]`
`=lim[2+5/[n^2]]/[-3-3/[n^2]]`
`=2/[-3]=-2/3`
`b)lim(-5n^3-2n^2+5n-6)`
`=lim n^3(-5-2/n+5/[n^2]-6/[n^3])`
Vì `{:(lim n^3=+oo),(lim (-5-2/n+5/[n^2]-6/[n^3])=-5):}}=>lim n^3(-5-2/n+5/[n^2]-6/[n^3])=-oo`
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3+3n^2-1}{n^2-2n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2-1}{-2n+3}\)
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3+3n^2-1}{n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^3\left(-3+\dfrac{3}{n}-\dfrac{1}{n^3}\right)}{n^2\left(1-\dfrac{2}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3}{n^2}=\lim\limits_{n\rightarrow\infty}-3n=-\infty\)
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2-1}{-2n+3}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3-\dfrac{1}{n^2}\right)}{n\left(-2+\dfrac{3}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3}{2}n=-\infty\)
Tìm giới hạn dãy số :
\(a,lim\dfrac{5n+1}{2n}\\ b,lim\dfrac{6n^2+8n+1}{5n^2+3}\\ c,lim\dfrac{3^n+2^n}{4.3^n}\\ d,lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}\)
a: \(\lim\limits\dfrac{5n+1}{2n}=\lim\limits\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=\lim\limits\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5+0}{2}=\dfrac{5}{2}\)
b: \(\lim\limits\dfrac{6n^2+8n+1}{5n^2+3}\)
\(=\lim\limits\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}\)
\(=\lim\limits\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}\)
\(=\dfrac{6+0+0}{5+0}=\dfrac{6}{5}\)
c: \(\lim\limits\dfrac{3^n+2^n}{4\cdot3^n}\)
\(=\lim\limits\dfrac{\dfrac{3^n}{3^n}+\left(\dfrac{2}{3}\right)^n}{4\cdot\left(\dfrac{3^n}{3^n}\right)}\)
\(=\lim\limits\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1+0}{4}=\dfrac{1}{4}\)
d: \(\lim\limits\dfrac{\sqrt{n^2+5n+3}}{6n+2}\)
\(=\lim\limits\dfrac{\sqrt{\dfrac{n^2}{n^2}+\dfrac{5n}{n^2}+\dfrac{3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}\)
\(=\lim\limits\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}\)
\(=\dfrac{\sqrt{1+0+0}}{6}=\dfrac{1}{6}\)
\(a,lim\dfrac{5n+1}{2n}=lim\dfrac{\dfrac{5n}{n}+\dfrac{1}{n}}{\dfrac{2n}{n}}=lim\dfrac{5+\dfrac{1}{n}}{2}=\dfrac{5}{2}\\ b,lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{\dfrac{6n^2}{n^2}+\dfrac{8n}{n^2}+\dfrac{1}{n^2}}{\dfrac{5n^2}{n^2}+\dfrac{3}{n^2}}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)
\(c,lim\dfrac{3^n+2^n}{4.3^n}=\dfrac{\dfrac{3^n}{3^n}+\dfrac{2^n}{3^n}}{\dfrac{4.3^n}{3^n}}=\dfrac{1+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)
\(d,lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{\sqrt{\dfrac{n^2+5n+3}{n^2}}}{\dfrac{6n}{n}+\dfrac{2}{n}}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)
\(a\text{)}lim\dfrac{5n+1}{2n}=lim\dfrac{5}{2}+lim\dfrac{1}{2n}=\dfrac{5}{2}\)
\(b\text{)}lim\dfrac{6n^2+8n+1}{5n^2+3}=lim\dfrac{6+\dfrac{8}{n}+\dfrac{1}{n^2}}{5+\dfrac{3}{n^2}}=\dfrac{6}{5}\)
\(c\text{)}lim\dfrac{3^n+2^n}{4.3^n}=lim\dfrac{\left(\dfrac{3}{3}\right)^n+\left(\dfrac{2}{3}\right)^n}{4}=\dfrac{1}{4}\)
\(d\text{)}lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}=lim\dfrac{n\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{n\left(6+\dfrac{2}{n}\right)}=lim\dfrac{\sqrt{1+\dfrac{5}{n}+\dfrac{3}{n^2}}}{6+\dfrac{2}{n}}=\dfrac{1}{6}\)