\(\sqrt{2x^4-8x^2+16}=\sqrt{8}.\)
\(\sqrt{x^2-5x-6}=x-2\)
\(\sqrt{x^2-8x+16}=4-x\)
\(\sqrt{x^2-2x}=2-x\)
\(\sqrt{2x+27}-6=x\)
a: ĐKXĐ: \(x^2-5x-6>=0\)
=>(x-6)(x+1)>=0
=>\(\left[{}\begin{matrix}x>=6\\x< =-1\end{matrix}\right.\)
\(\sqrt{x^2-5x-6}=x-2\)
=>\(\left\{{}\begin{matrix}x-2>=0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=6\\-5x-6=-4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\-x=10\end{matrix}\right.\)
=>\(x\in\varnothing\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-8x+16}=4-x\)
=>\(\sqrt{\left(x-4\right)^2}=4-x\)
=>|x-4|=4-x
=>x-4<=0
=>x<=4
c: ĐKXĐ: \(x^2-2x>=0\)
=>x(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =0\end{matrix}\right.\)
\(\sqrt{x^2-2x}=2-x\)
=>\(\left\{{}\begin{matrix}x^2-2x=\left(2-x\right)^2\\x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x=x^2-4x+4\\x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=4\\x< =2\end{matrix}\right.\Leftrightarrow x=2\left(nhận\right)\)
d: ĐKXĐ: x>=-27/2
\(\sqrt{2x+27}-6=x\)
=>\(\sqrt{2x+27}=x+6\)
=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+6\right)^2=2x+27\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\x^2+12x+36-2x-27=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\x^2+10x+9=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+9\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-6\\x\in\left\{-9;-1\right\}\end{matrix}\right.\)
=>x=-1
Kết hợp ĐKXĐ, ta được: x=-1
a.
\(\sqrt{x^2-5x-6}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x=-10\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
\(\sqrt{x^2-8x+16}=4-x\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4-x\)
\(\Leftrightarrow\left|x-4\right|=-\left(x-4\right)\)
\(\Leftrightarrow x-4\le0\)
\(\Rightarrow x\le4\)
c.
\(\sqrt{x^2-2x}=2-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2-2x=\left(2-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x^2-2x=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\2x=4\end{matrix}\right.\)
\(\Rightarrow x=2\)
d.
\(\Leftrightarrow\sqrt{2x+27}=x+6\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+6\ge0\\x+27=\left(x+6\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-6\\x+27=x^2+12x+36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-6\\x^2+11x+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{85}}{2}\\x=\dfrac{-11-\sqrt{85}}{2}\left(loại\right)\end{matrix}\right.\)
a) \(\sqrt{2x-5}=2\)
b) \(\sqrt{x^2-6x+9}=7\)
c) \(\sqrt{x^2-8x+16}=4-x\)
\(a,ĐK:x\ge\dfrac{5}{2}\\ PT\Leftrightarrow2x-5=4\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\\ b,PT\Leftrightarrow\left|x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}x-3=7\\3-x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\\ c,ĐK:x\le4\\ PT\Leftrightarrow\left|x-8\right|=4-x\\ \Leftrightarrow\left[{}\begin{matrix}x-8=4-x\left(x\ge8\right)\\8-x=4-x\left(x\le8\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\left(trái.vs.ĐK\right)\\0x=4\left(ktm\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a) \(\sqrt{2x-5}=2\)
\(\Leftrightarrow\) \(\sqrt{2x-5}^2=2^2\)
\(\Leftrightarrow\) \(2x-5=4\)
\(\Leftrightarrow\) 2x = 9
\(\Leftrightarrow\) x = \(\dfrac{9}{2}\)
Chúc bạn học tốt
giải pt\(\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{4x^2-12x+9}=2x-3\)
\(1.\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{\left(4-x\right)^2}=4-x\)
\(4-x-4+x=0\)
= 0 phương trình vô nghiệm.
\(2.\sqrt{4x^2-12x+9}=2x-3\)
\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)
\(2x-3-2x+3=0\)
= 0 phương trình vô nghiệm.
a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
hay \(x\le4\)
b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
hay \(x\ge\dfrac{3}{2}\)
a/ \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=4\)
Vậy...
b/ \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy...
Giải phương trình
a,\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
b, \(\sqrt{x^4+2x^2+1}=\sqrt{x^2+10x+25}-10x-22\)
c, \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+8-2\sqrt{x+7}}=4\)
a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81
⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0
⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0
⇔ 7x2 - 4x - 96 = 0
x1 = 4 ( nhận )
x2 = \(\frac{-24}{7}\) ( nhận )
Vậy: S = {4; \(\frac{-24}{7}\)}
1) giải pt:
a) \(\sqrt{3x+10}=4\)
b) \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\)
c) \(\sqrt{2x+1}=3\)
d) \(\sqrt{2x+1}+1=x\)
giúp mk vs ah
a) \(\sqrt{3x+10}=4\left(đk:x\ge-\dfrac{10}{3}\right)\Leftrightarrow3x+10=16\Leftrightarrow x=2\)
b) \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\Leftrightarrow\sqrt{\left(3x-1\right)^2}=\sqrt{\left(x+4\right)^2}\Leftrightarrow3x-1=x+4\Leftrightarrow2x=5\Leftrightarrow x=\dfrac{5}{2}\)
c) \(\sqrt{2x+1}=3\left(đk:x\ge-\dfrac{1}{2}\right)\Leftrightarrow2x+1=9\Leftrightarrow x=4\)
d) \(\sqrt{2x+1}+1=x\left(đk:x\ge1\right)\Leftrightarrow\sqrt{2x+1}=x-1\Leftrightarrow2x+1=x^2-2x+1\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)\(\Leftrightarrow x=4\)(do \(x\ge1\))
a: Ta có: \(\sqrt{3x+10}=4\)
\(\Leftrightarrow3x+10=16\)
\(\Leftrightarrow3x=6\)
hay x=2
b: Ta có: \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\)
\(\Leftrightarrow\left|3x-1\right|=\left|x+4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=x+4\\3x-1=-x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\4x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
c: Ta có: \(\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow x=4\)
C = \(\sqrt{9x^2}-2x\left(x< 0\right)\)
D = x-4+\(\sqrt{16-8x+x^2}\)(x>4)
\(C=\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\)
\(D=x-4+\sqrt{16-8x+x^2}=x-4+\left|4-x\right|=x-4+x-4=2x-8\)
\(C=\sqrt{9x^2}-2x=-3x-2x=-5x\)
\(D=x-4+\sqrt{x^2-8x+16}=x-4+x-4=2x-8\)
Tim x de bt co nghia:
\(B=\frac{\sqrt{16-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+8}\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)