Find the minimum value of A = \(\sqrt{3x-6}-21+\sqrt{x-2}\)
Find the Minimum value of this expression
\(\sqrt{\left(3x+1\right)^2+1}+\sqrt{\left(3x-3\right)^2+9}\)
a) The minimum value of \(\sqrt{5x-1}+\left(1.1\right)^2\)
b) The maximum value of \(1.21-\sqrt{11-3x}\)
a) Ta có :
\(\sqrt{5X-1}\ge0\) => \(\sqrt{5X-1}+\left(1,1\right)^2\ge\left(1,1\right)^2\) Vậy GTNN là 1,21
b) Ta có
\(\sqrt{11-3X}\ge0\) =>\(-\sqrt{11-3X}\le0\) =>\(1,21-\sqrt{11-3X}\le1,21\) GTLN là 1,21
kết quả câu a) ko phải là 1 ; kết quả câu b) ko phải là 21
Find the minimum value of the expression .
Answer: The minimum value is
Bài này không khó cách làm thế này:
x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4
= (x + y +1 )2 +4
Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4
Dấu "=" xảy ra khi và chỉ khi x=y=-0,5
Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.
Xong rồi đó. Có gì sai sót các bạn góp ý nhé.
x2 + y2 + 2x + 2y + 2xy + 5
= x2 + y2 + 12 + 2x + 2y + 2xy + 4
= (x + y + 1)2 + 4 \(\ge\) 4
Ta có : \(A=x^2+y^2+2x+2y+2xy+5=x^2+y^2+1^2+2xy+2.y.1+2.x.1+5-1\)
\(=\left(x+y+1\right)^2+4\ge4\)
Vậy Amin = 4
Find the minimum value of A=x(x-3)
We have: \(A=x^2-3x=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(\Rightarrow A_{min}=-\frac{9}{4}\) at \(x=\frac{3}{2}\)
Find the maximum and minimum value of the expression
\(\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)if \(x,y,z\in\left[1,2016\right]\)
Đặt \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
Tìm giá trị nhỏ nhất :Áp dụng bđt Cauchy : \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\ge\frac{3.\sqrt[3]{xyz}}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
\(\Rightarrow A\ge\sqrt[3]{xyz}+\frac{2016}{\sqrt[3]{xyz}}\ge2\sqrt{\sqrt[3]{xyz}.\frac{2016}{\sqrt[3]{xyz}}}\)
\(\Rightarrow A\ge2\sqrt{2016}=24\sqrt{14}\) .
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x=y=z\\\sqrt[3]{xyz}=\frac{2016}{\sqrt[3]{xyz}}\end{cases}\) \(\Leftrightarrow x=y=z=12\sqrt{14}\)
Vậy A đạt giá trị nhỏ nhất bằng \(24\sqrt{14}\) tại \(x=y=z=12\sqrt{14}\)
Assume that two numbers x and y satisfy: 2x + y = 6.
Find the minimum value of expression A = 4x2 + y2
\(2x+y=6\)
\(\Rightarrow y=6-2x\)
\(\text{Thế vào phương trình ta dc:}\)
\(4x^2+\left(6-2x\right)^2\)
\(=4x^2+36-24x+4x^2\)
\(=8x^2-24x+36\)
\(\Leftrightarrow4x\left(2x-6\right)+36\)
Rồi sao nữa quên ùi
ta có : \(2x+y=6\Leftrightarrow y=6-2y\)
thay vào A, ta có:
\(A=4x^2+\left(6-2x\right)^2\)
\(A=8\left(x^2-3x+2,25\right)+18\)
\(A=8\left(x-1,5\right)^2+18\)
\(\Rightarrow A\ge18\)
find the value of b and c for a quadratic function f(x) = x2+bx+c such that the solution of the equation f(x)=0 are \(\sqrt{3},-\sqrt{3}\)
Find the minimum value of the expression .
A=(x+y+1)(x+y+1)+4
A=(x+y+1)2+4
Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp
ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)
\(A=x^2+y^2+2x+2y+2xy+5\)
\(=\left(x^2+y^2+2x+2y+2xy+1\right)+4\)
\(=\left(x+y+1\right)^2+4\ge4\)
Dấu "=" xảy ra khi \(\left(x+y+1\right)^2=0\)\(\Rightarrow x=-y-1\)
Vậy \(Min_A=4\) khi \(x=-y-1\)
For positive real numbers x,y,z so that: x+y+z = 3. Find the minimum value of expression
A = 1/( x^2 + x) + 1/(y^2+ y) +1/( z^2 +z)