Tìm x:
(x-3).(x-5) < 0
Tìm x ≥ 0, biết:
a) 2x-7\(\sqrt{x}\)+3=0
b) 3\(\sqrt{x}\)+5 < 6
c) x-3\(\sqrt{x}\) -10 < 0
d) x- 5\(\sqrt{x}\) +6 = 0
e) x+ 5\(\sqrt{x}\) -14 < 0
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)
Tìm x biết:
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
c) (x - 1)3 - x2.(x - 2) + 5 = 0.
d) x2 - 4x + 5 = 0.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0
<=> x2 - 4x - 12 = 0
<=> (x+2)(x-6) = 0
<=> x = -2 hoặc x = 6
d) x2 - 4x + 5 = 0.
<=> (x - 2)2 = -1 (vô lý)
Vậy phương trình vô nghiệm
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
Bài 5: Tìm x (Giải phương trinh)
a)x^3-13x=0
b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0
d) x + 1 = (x + 1)2
e) x + 5x2 = 0
f) x3 + x = 0
Bài 5: Tìm x (Giải phương trình)
a)x^3-13x=0 b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0 d) x + 5x2 = 0
d) x + 1 = (x + 1)2 e) x3 + x = 0
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) Ta có: \(2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)
d) Ta có: \(5x^2+x=0\)
\(\Leftrightarrow x\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{5}\end{matrix}\right.\)
Tìm x
1. x(x+7)=0
2. (x+12)(x-3)=0
3. (-x+5)(3-x)=0
4. x(2+x)(7-x)=0
5. (x-1)(x+2)(-x-3)=0
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
1. x ( x + 7 ) = 0
( 1 ) x = 0
( 2 ) x + 7 = 0 => x = -7
S = { -7 ; 0 }
2. ( x + 12 ) ( x - 3 ) = 0
( 1 ) x + 12 = 0 => x = -12
( 2 ) x - 3 = 0 => x = 3
S = { -12 ; 3 }
3. ( -x + 5 ) ( 3 - x ) = 0
( 1 ) -x + 5 = 0 => -x = -5 => x = 5
( 2 ) 3 - x = 0 => x = 3
S = { 3 ; 5 }
4. x ( 2 + x ) ( 7 - x ) = 0
( 1 ) x = 0
( 2 ) 2 + x = 0 => x = -2
( 3 ) 7 - x = 0 => x = 7
S = { -2 ; 0 ; 7 }
5. ( x - 1 ) ( x + 2 ) ( -x - 3 ) = 0
( 1 ) x - 1 = 0 => x = 1
( 2 ) x + 2 = 0 => x = -2
( 3 ) -x - 3 = 0 => -x = 3 => x = -3
S = { -3 ; -2 ; 1 }
tìm x
1/ x.(x+7)=0
2/ (x+12).(x-3)=0
3/ (-x+5).(3-x)=0
4/ x.(2+x).(7-x)=0
5/ (x-1).(x+2).(-x-3)=0
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)
1, tìm x biết :
[ x-3 ] + [ x-2 ] + [ x-1 ] + ... + [ x+5 ] = 0
2, tìm x sao cho :
[ x-7 ] . [ x+3 ] < 0
3, cho biểu thức : A = [ 5.x^2 - 8.x^2 - 9.x^2 ] . [ 3y^3] . tìm x, y để A > hoặc = 0
cậu chia từng câu ra cho mình nhé
Tìm x : a, (x+8)(x-5)=0 b, x(x-4)+5(x-4)=0 c, 3x(x+1)-6(x+1)=0 d, 5x(x-3)+10 (3-x) =0 Giúp em với ạ
\(a,\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\\ b,\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\\ c,\Leftrightarrow\left(x+1\right)\left(3x-6\right)=0\\ \Leftrightarrow3\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x-3\right)\left(5x-10\right)=0\\ \Leftrightarrow5\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
a) \(\left(x+8\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\)
b) \(x\left(x-4\right)+5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
c) \(3x\left(x+1\right)-6\left(x+1\right)=0\) \(\Rightarrow\left(3x-6\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-6=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
d) \(5x\left(x-3\right)+10\left(3-x\right)=0\) \(\Rightarrow5x\left(x-3\right)-10\left(x-3\right)=0\)
\(\Rightarrow\left(5x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-10=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Tìm x:
(x-1).(x+5)<0
(x+3).(4-x)>0
(x-3).(x+7).(x-1)>0
(x-3).(x+5).(x-1).(x+2)>0
=>x-1;x+5 trái dấu mọi x
Ta có:x-1-(x+5)=x-1-x-5=-6<0
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+5>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-5\end{cases}}\)
=> -5<x<1=>x\(\in\){-4;-3;-2;-1;0}
muốn biểu thức <0 thì =>x ={bé hơn 1 lớn hơn -5}
muốn biểu thức >0 thì => x={bé hơn 4 lớn hơn -3}
muốn biểu thức >0 thì => x={lớn hơn 3.......}
muốn biểu thức >0 thì => x={lớn hơn 3...}
Mk làm theo thức tự của bn sắp xếp đừng lầm nha nhớ k nữa nha
\(\left(x-1\right)\left(x+5\right)< 0\)
=> \(x-1\)và \(x+5\)trái dấu
Nhận thấy: \(x-1< x+5\)
=> \(\hept{\begin{cases}x-1< 0\\x+5>0\end{cases}}\)
<=> \(\hept{\begin{cases}x< 1\\x>-5\end{cases}}\)
=> \(1< x< -5\)
Vậy...
Tìm biết: a) x (x - 6) = 0; b) x (x + 5) = 0; c) (x + 3)(x - 7) = 0; d) (x - 3) ( x 2 + 12) = 0