Tìm m,n \(_{\in}\)N và khác 0 biết
\(2^m-2^n=256\)
Bài 1: Tìm m và n thuộc N*. Biết
a) 2^m + 2^n = 2^m + n
b) 2^m - 2^n = 256
a, 2m + 2n = 2m+n
=> 2m+n - 2m - 2n = 0
=> 2m(2n - 1) - (2n - 1) = 1
=> (2m - 1)(2n - 1) = 1
=> \(\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\)=> m = n = 1
Vậy m = n = 1
b, 2m - 2n = 256
Dễ thấy m ≠ n, ta xét hai trường hợp:
- Nếu m - n = 1 => n = 8, m = 9
- Nếu m - n ≥ 2 => 2m-n - 1 là số lẻ lớn hơn 1, khi đó VT chứa thừa số nguyên tố khác 2
Mà VT chứa thừa số nguyên tố 2 => trường hợp này không xảy ra
Vậy m = 9, n = 8
Tìm m và n thuộc N* biết: 2m - 2n = 256
2m-2n > 0 => 2m>2n => m>n
2m-2n=256
2n(2m-n-1) = 28
Nếu m-n =1 thì2n(2m-n-1)=28
2n(2-1) =28
2n = 28
=> n=8
m-n = 1
m-8 = 1
m = 8+1
m=9
Nếu m-n lớn hơn hoặc bằng 2 thì :2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn
Vậy m=9 ; n=8
2m - 2n = 256
<=> 2n(2m-n -1) = 28
Trường hợp 1 : m- n= 1
=> n=8 và m=9 (thỏa mãn
Trường hợp 2: m- n > hoặc = 2
=>2n(2m-n -1) là số lẻ. Mà là số chẵn ( mâu thuẫn)
Vậy n=8 và m=9
2^m-2^n=2^8
Chia cả 2 vế cho 2 mũ 8.
2^(m-8)- 2^(n-8)=1
+giả sử m<=8, ta có VT<=1-2^(n-8)<1
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1
do đó n>=8
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<>1
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9.
Vậy m=9, n=8
Tìm các số nguyên dương m và n biết 2m- 2n= 256
tìm tổng hai số nguyên dương m và n biết 2m-2n=256
2m - 2n = 256
2m - 2n = 28
m - n = 8
mk chỉ biết thế thôi
Có 2m -2n=256=28
=> 2n (2m-n-1)=28.
=>2m-n-1=28-n
=>2m-n = 28-n +1
TH1: 8-n = 0 => n = 8 => 2m-n=2 => m-n =1 => m =9
TH2: 8-n <0 => vô lý do 28-n +1 sẽ là phân số trong khi 2m-n không là phân số
TH3: 8-n>0 => 28-n +1 lẻ trong khi 2m-n chẵn => vô lý
=> m =9, n=8 => m+n=17
Cho 2^m + 2^n=256
Tìm m; n biết m>n
Vì 256 > 0 => m > n
Giả sử m = n + k (k ∈ N*)
Thay vào phương trình, ta có:
....................2ⁿ.2^k - 2ⁿ= 2^8
...............⇔ 2ⁿ(2^k - 1) = 2^8
Nếu k ≥ 2 => 2^k - 1 luôn lẻ => 2^k - 1 khác luỹ thừa của 2 (loại)
Vậy k = 1 => m = n + 1
Thay vào phương trình, ta có:
.....................2ⁿ.2 - 2ⁿ = 2^8
................⇔ 2ⁿ = 2^8
................⇔ n = 8
................⇔ m = n + 1 = 8 + 1 = 9
Thử lại thấy đúng, do đó kết luận m = 9, n = 8
a) Đặt m = n + k
Ta có 2m - 2n = 256
<=> 2n + k - 2n = 256
<=> 2n(2k - 1) = 256 (1)
Nhận thấy : 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 = 1 => 2k = 2 => k = 1
Khi đó 2n = 256
<=> n = 8
=> m = n + k = 9
Vậy m = 9 ; n = 8
b) Đặt m = n + k (k \(\inℕ^∗\))
Khi đó 2m - 2n = 1984
<=> 2n + k - 2n = 1984
<=> 2n(2k - 1) = 1984 (1)
Vì 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 \(\in\left\{31;1\right\}\)
Khi 2k - 1 = 31
=> 2k = 32
=> k = 5
Khi đó 2n = 64 => n = 6
=> m = n + k = 11
Khi 2k - 1 = 1
=> 2k = 2
=> k = 1
Khi đó 2n = 992
=> n \(\in\varnothing\)
Vậy n = 6 ; m = 11
tìm số tự nhiên m,n biết
2^m-2^n=256
Tìm các số nguyên dương m và n , sao cho :
\(2^m-2^n=256\)
Ta có: \(2^m-2^n=256\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=256\)(1)
Ta có: \(2^m-2^n=256\)
\(\Leftrightarrow2^m>2^n\)
\(\Leftrightarrow m>n\)
(1) suy ra \(2^{m-n}-1\) là số lẻ
\(\Leftrightarrow2^{m-n}-1=1\)
\(\Leftrightarrow m-n=1\)
\(\Leftrightarrow2^n=256\)
hay n=8
hay m=1+n=1+8=9
Vậy: (m,n)=(9;8)
Bạn Nguyễn Lê Phước Thịnh ơi? Nhưng mik vẫn ko hiểu tại sao \(2^{m-n}-1\)là số lẻ và m>n lại suy ra được \(2^{m-n}-1=1\)?
tại sao từ 2^m - 2^n lại tách ra thành 2^n.(2^m-n-1) được vậy
tìm số tự nhiên m,n biết: 2m-2n=256
Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9