tìm giá trị của x để \(\frac{x^2-6x+9}{x^2-5x}\)bằng 0
giúp mình vsss
Tìm giá trị của x để phân thức \(\frac{3x-2}{x^2-9}\) bằng 0
Tìm giá trị nhỏ nhất của phân thức A=\(\frac{6x^2-4x+4}{x^2}\)(x khác 0)
Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)
\(3x=2\)
\(x=\frac{2}{3}\)
Câu thứ 2 nha:
A = \(\frac{6x^2-4x+4}{x^2}\)= \(\frac{2x^2+4x^2-4x+1}{x^2}\)= \(2+\frac{\left(x-2\right)^2}{x^2}\)
Đặt B = \(\frac{\left(x-2\right)^2}{x^2}\)
Do x khác 0 =>\(\left(x-2\right)^2>=0\)và \(x^2\)\(>0\)
Cho nên giá trị nhỏ nhất của phân thức A đã nêu là giá trị nhỏ nhất của phân thức B.
=> Min B = \(\frac{0}{x^2}\)= 0
=> Min A = 2 + 0 = 2
Dấu "=" xảy ra khi và chỉ khi (x-2)2 = 0
=> x-2 = 0
=> x = 2
tìm giá trị của x để \(\frac{x^2-10x+25}{x^2-5x}\)bằng 0
giúp mình vss
\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\) \(\left(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\right)\)
Để \(\frac{x-5}{x}=0\Rightarrow x=5\) (Loại)
Vậy không có giá trị \(x\) nào thoả mãn để \(\frac{x^2-10x+25}{x^2-5x}=0\)
cho biểu thức :\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a, tìm điều kiện của biến x để giá trị của biểu thức được xác định
b, tìm giá trị của x để giá trị của biểu thức bằng 1
c, tìm giá trị của x để giá trị của x= -\(\frac{1}{2}\)
d, tìm giá trị của x để giá trị của biểu thức bằng -3
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5
b/ Gọi biểu thức là A. Rút gọn A ta được:
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)
A=1 => x-1=2 => x=3
c/ A=-1/2 <=> x-1=-1 => x=0
d/ A=-3 <=> x-1=-6 => x=-5
\(P=\frac{x^2-3x+2}{x^2-6x+9}:\left(\frac{x-1}{x-2}-\frac{1}{3-x}+\frac{-x^2+4x-2}{x^2-5x+6}\right)\)
a, Rút gọn P
b, tìm các giá trị của x sao cho P<1
c, khi x<3, hãy tìm giá trị nhỏ nhất của P
Tìm x biết:
a) x(x - 2) - x2 + 5x = 6
b) (x - 3)2 - x + 9 =0
giúp mình câu này nha
\(a,\Leftrightarrow x^2-2x-x^2+5x=6\\ \Leftrightarrow3x=6\\ \Leftrightarrow x=2\)
\(b,\Leftrightarrow x^2-6x+9-x+9=0\\ \Leftrightarrow x^2-7x+18=0\\ \Leftrightarrow\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{23}{4}=0\\ \Leftrightarrow\left(x-\dfrac{7}{2}\right)^2+\dfrac{23}{4}=0\left(vôlí\right)\)
Tìm giá trị của x để phân thức sau bằng 0:
\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\)
đk để phân thức = 0 là tử số =0
x4 - 5x2 + 4 = (x2 -1)(x2 - 4) = 0
x = -1;1;-2;2
ồ quên, chỉ lấy 2 nghiệm x = -2;2
còn x = -1;1 (loại) vì làm mẫu = 0(vô nghĩa)
2/ Cho phân thức: x^2+6x+9/x+3
a/ Tìm điều kiện của x để giá trị của phân thức được xác định ?
b/ Rút gọn phân thức
c/ Tìm giá trị của x để giá trị của phân thức bằng -5
d/ Tính giá trị của phân thức tại x =1/2
1,cho biểu thức C=\(\left(\frac{x}{x+2}+\frac{5x-12}{5x^2-12x}-\frac{8}{5x^2+10x}\right):\frac{x^2-2x+2}{x^2-x-6}\)
a,tìm điều kiện để giá trị của C được xác định
b,rút gọn biểu thức
c,tìm giá trị của x để giá trị của C nhỏ nhất.Xác định giá trị nhỏ nhất đó
d,tìm các giá trị nguyên của x để C có giá trị nguyên
Cho biểu thức: \(A=\frac{3x^2-11x+6}{x^2-6x+9}\)
a, Tìm giá trị của x để A=0
b, Tìm giá trị nguyên của x để A có giá trị nguyên
ĐKXĐ : x2 - 6x + 9 \(\ne\)0
<=> x \(\ne\)3
a) A = 0
=> 3x2 - 11x + 6 = 0
<=> 3x2 - 9x - 2x + 6 = 0
<=> 3x(x - 3) - 2(x - 3) = 0
<=> (3x - 2)(x - 3) = 0
<=> \(\orbr{\begin{cases}x=\frac{2}{3}\left(tm\right)\\x=3\left(\text{loại}\right)\end{cases}}\)
Vậy x = 2/3 thì A = 0
b) Ta có A = \(\frac{3x^2-11x+6}{x^2-6x+9}=3+\frac{7x-21}{x^2-6x+9}=3+\frac{7}{x-3}\)
Để : A \(\inℤ\Leftrightarrow7⋮x-3\Leftrightarrow x-3\inƯ\left(7\right)\Leftrightarrow x-3\in\left\{1;7;-1;-7\right\}\)
Lập bảng xét các trường hợp
x - 3 | 1 | 7 | -1 | -7 |
x | 4(tm) | 10(tm) | 2(tm) | -4(tm) |
Vậy \(x\in\left\{4;10;2;-4\right\}\)thì A \(\inℤ\)