Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
👁💧👄💧👁
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

nguyễn thu hiền
Xem chi tiết
Phạm Thị Thanh Thảo
14 tháng 4 2023 lúc 20:16

Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)

* Nếu p=3 => p+2=3+2=5 là số nguyên tố 

                 => p+4=3+4=7 là số nguyên tố

=> p=3 thỏa mãn đề bài

* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)

* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)

Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)

* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)

Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)

Vậy p=3 thỏa mãn đề bài

 

 

Nguyễn Hoàng Mỹ Linh
Xem chi tiết
LƯƠNG THỊ YẾN NHI
Xem chi tiết

a) Với p=1

Ta có

p+2=1+2=3 (nguyên tố,thỏa mãn)

p+4=1+4=5 (thỏa mãn )

Nhưng p lại là 1 số nguyên tố mà 1 ko phải số nguyên tố nên p=1 (loại)

Với p=2

Ta có:

p+2=2+2=4 (loại)

=>Trường hợp p=2 (loại)

Với p=3

Ta có 

p+2=3+2=5 (thỏa mãn)

p+4=3+4=7 (thỏa mãn)

=>Trường hợp p=3 (thỏa mãn)

Với p>3 thì p có dạng 3k+1 hoặc 3k+2

+,p=3k+1

thì p+2=3k+1+2=3k+3 chia hết cho 3 là hợp số( loại)

+,p=3k+2

thì p+4=3k+2+4=3k+6 chia hết cho 3 là hợp số( loại)

Vậy để p là số nguyên tố và p+2 và p+4 cũng là số nguyên tố thì p=3

Các câu khác bn lm tương tự nha

Mk ko chắc là lm đúng đâu nếu sai thì xl bn nhiều

Khách vãng lai đã xóa
key monstar
Xem chi tiết
Trần Vũ Thu Giang
Xem chi tiết
Lê Thị Bích Tuyền
9 tháng 1 2015 lúc 20:22

Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm

Nguyễn Hữu Hưng
9 tháng 1 2015 lúc 19:44

1) p=3

p=3

p=3

p=5

Cửu Long Chảo
Xem chi tiết
Thanh Nguyen Phuc
9 tháng 2 2021 lúc 9:55

Sai thì sửa,chửa thì đẻ

Do p+4 và p+8 là nguyên tố > 3 nên p+4 và p+8 đều lẻ

=> p lẻ

Với p = 3 thì p + 8 = 3 + 8 = 11; p + 4 = 3 + 4 = 7, đều là số nguyên tố (Chọn)

Với p > 3, do p nguyên tố nên p = 3.k + 1 hoặc p = 3.k + 2 (k ∈ N*)

+ Nếu p = 3.k + 1 thì p + 8 = 3.k + 1 + 8 = 3.k + 9 chia hết cho 3, là hợp số (Loại)

+ Nếu p = 3.k + 2 thì p + 4 = 3.k + 2 + 4 = 3.k + 6 chia hết cho 3, là hợp số, (Loại)

Vậy p = 3

Khách vãng lai đã xóa
Xyz OLM
9 tháng 2 2021 lúc 9:56

Với p = 2

=> p + 4 = 6

=> p = 1 loại

Với p = 3 

=> p + 4 = 7 

=> p + 8 = 11

=> p = 3 (tm)

Với p > 3

=> p = 3k + 1 hoặc p = 3k + 2 (k \(\inℕ^∗\))

Với p = 3k + 1 

=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) \(⋮\)3

=> p = 3k + 1 loại

Với p = 3k + 2

=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) \(⋮\)3

=> p = 3k + 2 loại

Vậy p = 3 là giá trị cần tìm

Khách vãng lai đã xóa
.
9 tháng 2 2021 lúc 9:57

Với p = 2 => p + 4 = 6

Vì 6 là số nguyên tố nên p = 2  (loại)  (1)

Với p = 3 => p + 4 = 7và p + 8 = 11

Vì 7 và 8 là các số nguyên tố nên p = 3  (thỏa mãn)  (2)

Với p là số nguyên tố lớn hơn hoặc bằng 3

=> p có dạng 3k + 1  ; 3k + 2  (k thuộc N*)

+) p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3 (k + 3) chia hết cho 3

=> p + 8 là hợp số 

=> p = 3k + 1  (loại)  (3)

+) p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 = 3 (k + 2) chia hết cho 3

=> p + 4 là hợp số

=> p = 3k + 2  (loại)   (4)

Từ (1), (2), (3) và (4) => p = 3

Vậy p = 3.

Khách vãng lai đã xóa
Thị Thắm Phan
Xem chi tiết
Đoàn Dương Quỳnh San
Xem chi tiết
Hiền Thương
15 tháng 12 2020 lúc 4:58

xét thử :

Nếu p = 2 => p+2 = 4 ( loại ) 

 Nếu p = 3 => p+4 = 7  và  => p+8 = 11 (thỏa mãn ) 

Nếu p là số nguyên tố >3 => p không chia hết cho 3 => \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\) 

Nếu p có dạng p=3k+1 

=> p+8 = 3k+1 + 8 = 3k+9 \(⋮\) 3 ( loại )

Nếu p có dạng p=3k+2 

=> p+4 = 3k+2+4 = 3k+6 \(⋮\) ( loại )

Vây p=3 

                   

Khách vãng lai đã xóa