Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyền Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 21:46

Bài 1:

a: \(A=x^2+2x+4\)

\(=x^2+2x+1+3\)

\(=\left(x+1\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

Vậy: \(A_{min}=3\) khi x=-1

b: \(B=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-10=0

=>x=10

Vậy: \(B_{min}=1\) khi x=10

c: \(C=x^2-2x+y^2+4y+8\)

\(=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x-1=0 và y+2=0

=>x=1 và y=-2

Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)

Bài 2:

a: \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16-16\right)+5\)

\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

c: \(C=4x-x^2+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

d: \(D=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-\left(x-3\right)^2-2< =-2\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

Đàm Tùng Vận
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:46

\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

My Trà
Xem chi tiết
missing you =
26 tháng 7 2021 lúc 15:56

\(a,=x^2+2x+1+2019=\left(x+1\right)^2+2019\ge2019\) dấu"=" xảy ra<=>x=-1

b,\(=m^2+2.2m+4-5=\left(m+2\right)^2-5\ge-5\) dấu"=" xảy ra<=>m=-2

c, \(=x-2\sqrt{x}+10=x-2\sqrt{x}+1+9=\left(\sqrt{x}-1\right)^2+9\ge9\)

dấu"=" xảy ra<=>x=1

b, \(4x-8\sqrt{x}+2020=4x-2.2.2\sqrt{x}+4+2016=\left(2\sqrt{x}-2\right)^2+2016\ge2016\)

dấu"=" xảy ra<=>x=1

Trên con đường thành côn...
26 tháng 7 2021 lúc 15:56

undefined

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 23:08

a) Ta có: \(x^2+2x+2020\)

\(=x^2+2x+1+2019\)

\(=\left(x+1\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi x=-1

b) Ta có: \(m^2+4m-1\)

\(=m^2+4m+4-5\)

\(=\left(m+2\right)^2-5\ge-5\forall m\)

Dấu '=' xảy ra khi m=-2

c) Ta có: \(m^2+m\)

\(=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\)

\(=\left(m+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)

Dấu '=' xảy ra khi \(m=-\dfrac{1}{2}\)

O Ri
Xem chi tiết

Đặt \(A=\frac{x^2-2x+2020}{x^2}\)

\(=1-\frac{2}{x}+\frac{2020}{x^2}\)

\(=2020\left(\frac{1}{x^2}-\frac{1}{1010\cdot x}+\frac{1}{2020}\right)\)

\(=2020\left(\frac{1}{x^2}-2\cdot\frac{1}{x}\cdot\frac{1}{2020}+\frac{1}{2020^2}+\frac{1}{2020}-\frac{1}{2020^2}\right)=2020\left(\frac{1}{x}-\frac{1}{2020}\right)^2+1-\frac{1}{2020}=2020\left(\frac{1}{x}-\frac{1}{2020}\right)^2+\frac{2019}{2020}\ge\frac{2019}{2020}\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\frac{1}{x}-\frac{1}{2020}=0\)

=>x=2020

addfx
Xem chi tiết
Kiều Vũ Linh
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 14:57

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

Văn Thị Kim Chi
Xem chi tiết
chu ngọc trâm anh
Xem chi tiết
Girl
24 tháng 6 2019 lúc 11:52

\(C=\frac{2020}{2020-2x-x^2}=\frac{2020}{2021-\left(x+1\right)^2}\ge\frac{2020}{2021}\)

Dấu \("="\) xảy ra khi \(x=-1\)

Nguyễn Mai Anhh
Xem chi tiết
Huỳnh Quang Sang
6 tháng 8 2019 lúc 21:38

Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).

Đẳng thức xảy ra khi \(xy\ge0\)

Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)

Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)

Phải không ta???

Nguyễn Tiến Đạt
6 tháng 8 2019 lúc 21:40

Ta có A=|x-3|+|x-2|

            = |3-x|+|x-2|

         \(\ge\)\(\left|3-x+x-2\right|\)=|1|=1

=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)

                              \(\Leftrightarrow2\le x\le3\)

 Vậy Min A=1 khi \(2\le x\le3\)

tk mk nha*****CHÚC BẠN HỌC GIỎI*****
Mặt Trời Mùa Đông
Xem chi tiết
Lê Tuấn Nghĩa
6 tháng 8 2019 lúc 21:52

A=\(\left|x-3\right|+\left|x-2\right|\)

A= \(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|\)

\(\ge\left|1\right|\)=1

vậy Amin=1 khi x=3 hoặc x=2