Tìm các số nguyên x và y biết \(|\)x+2015\(|\)+\(|\)y-2016\(|\)= 0
tìm các cặp số nguyên x và y sao cho / x+2015/ + /y-2016/=0
Vì l x + 2015 l \(\ge\)0 với mọi x thuộc Z
l y - 2016 l \(\ge\)0 với mọi x thuộc Z
mà l x + 2015 l + l y -2016 l = 0
=> \(\hept{\begin{cases}x+2015=0\\y-2016=0\end{cases}}\)=> \(\hept{\begin{cases}x=-2015\\y=2016\end{cases}}\)
Do |x+2015| ≥ 0 với mọi x
|y-2016| ≥ 0 với mọi y
Suy ra |x+2015| + |y-2016| ≥ 0 với mọi x;y
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\\\end{cases}}\)
Đồng thời x+2015 và y-2016 bằng 0
=) (x;y)=(-2015;2016)
Tìm các số nguyên x; y biết: x^2013+ x^2014+ 2009^2015= y^2015+ y^2016+ 2010^2016
1 Tìm các số nguyên x,y tm
x^2013+x^2014+2009^2015=y^2015+y^2016+2010^2016
2 tìm số tự nhiên x,y biết 7*(x-2015)^2=23-y^2
Mấy bn giải giúp mh Thanks nhiều!
Tìm các số nguyên x và y thỏa mãn: x^2015+x^2016+2015^2016=y^2016+y^2017+2016^2017
a) Tìm x,y biết : I x+y-2I + I x-y-2I < hoặc = 0
b) Tìm x,y,z biết: z-15y/3 =15x-3z/8 =3y-8x/15 và 2x-y+z =13
c) Tìm số nguyên x, biết: x+ (x+1) +(x+2) +...+ 2017 =0. Biết vế trái là tổng các số nguyên liên tiếp
e) Tìm x biết: x-1/2017 + x-2/2016 - x-3/2015 = x-4/2014
f) Tìm x nguyên để
\(\sqrt{x+1}\) chia hết cho \(\sqrt{x-3}\)
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1
Tìm số nguyên x, y biết: (x+2y)/(x+y)=2016/2015
tìm các số x,y,z biết
x^2+y^2+z^2=xy+yz+zx và x^2015+y^2015+z^2015=3^2016
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
cau a ban de o hang dang thuc (x-y-z)^2 di
cho x và y là các số nguyên dương thỏa mãn 2x+y/x+y=2016/2015 tìm giá trị nhỏ nhất của y
tìm tất cả các số nguyên x,y thỏa mãn 2017^x-2016^y+1/2015