Cho tam giác ABC nội tiếp (O;R) và ngoại tiếp (I;r). Qua 2 điểm O và I dựng đường tròn (P) sao cho (P) tiếp xúc với AI. Gọi giao điểm giữa đường trung trực của BC với (P) và K khác O. Điểm M bất kì di động trên đường tròn ngoại tiếp tam giác BIC.
a) CMR: Tiếp tuyến tại M của đường tròn (MKO) luôn đi qua 1 điểm cố định S khi M di động ?
b) Gọi H là điểm đối xứng với I qua BC. Tia HS cắt đường tròn (SIO) tại điểm Q. CMR: Q thuộc đường tròn (O) ?
c) CMR: IO vuông góc với AQ ?
d) CMR: \(AB.BC+BC.CA+CA.AB\le\frac{4\left(4R+r\right)\left(8R-r\right)}{15}\) ?