Tìm giá trị nhỏ nhất của biểu thức : M = |x-2y+10|+(y-8)2+2014
tìm giá trị nhỏ nhất của biểu thức \(M=\left|x-2y+10\right|+\left(y-8\right)^2+2014\)
GTNN của M =2014
dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x=2y-10\\y=8\end{cases}}\)
\(\hept{\begin{cases}x=15\\y=8\end{cases}}\)
Vì \(|x-2y+10|+\left(y-8\right)^2\ge0\)\(\forall x,y\)
\(\Rightarrow M\ge2014\)\(\Rightarrow minM=2014\Leftrightarrow\hept{\begin{cases}x-2y+10=0\\y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-16=-10\\y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
Vậy \(minM=2014\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
a. Tìm giá trị x,y để :
S = | x + 2 | + | 2y - 10 | + 2014 đạt giá trị nhỏ nhất
b. Tìm giá trị nhỏ nhất của biểu thức : | x + 6 | + | 7 - x |
a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy SMin = 2014 tại x = -2 và y = 5
b, Đặt A = |x + 6| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:
\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)
Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)
Vậy AMin = 13 tại \(-6\le x\le7\)
Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất
=> | x+2 | = 0 => x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5
Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
1) tìm giá trị nhỏ nhất của biểu thức:
A=/x-3/+8.
2) tìm giá trị nhỏ nhất của biểu thức:
B= 11- / 4+x /
3) tìm giá trị nhỏ nhất của biểu thức:
a) M=/x-3/+18-x/
b) M= /x-4/+/x-10/
2:
|x+4|>=0
=>-|x+4|<=0
=>B<=11
Dấu = xảy ra khi x=-4
A= |x-3| +(-50) tìm giá trị nhỏ nhất của biểu thức B=2014- |x+8| tìm giá trị lớn nhất của biểu thức C= |x-100| + |y+2014| tìm giá trị nhỏ nhất của biểu thức
vì Ix-3I\(\ge\)0 \(\Rightarrow\)Để A nhỏ nhất thì Ix-3I=0\(\Rightarrow\)A=-50 đạt giá trị nhỏ nhất
Vì Ix+8I\(\ge\)0\(\Rightarrow\)Để B lớn nhất thì Ix+8I=0\(\Rightarrow\)B=2014 đạt giá trị lớn nhất
vì Ix-100I\(\ge\)0
Iy+2014I\(\ge\)0
\(\Rightarrow\)Để C nhỏ nhất thì Ix-100I=; Iy+204I=0\(\Rightarrow\)C=0 đạt giá trị nhỏ nhất
Cho x và y thỏa mãn : \(x^2+2xy+6x+6y+2y^2+8=0\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
Giúp em với !
\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)
\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Cho x và y thỏa mãn x^2+2xy+6x+6y+2y^2+8=0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2018
đề bài sai r bn ơi phải là +10 chứ ko phải +8 đâu nhá
Tìm giá trị nhỏ nhất của biểu thức: A=2x^2+y^2+2xy-6x-2y+10
\(A=2x^2+y^2+2xy-6x-2y+10\)
<=>\(A=y^2+2y\left(x-1\right)+2x^2-6x+10\)
<=>\(A=y^2+2y\left(x-1\right)+\left(x^2-2x+1\right)+\left(x^2-4x+4\right)+5\)
<=>\(A=y^2+2y\left(x-1\right)+\left(x-1\right)^2+\left(x-2\right)^2+5\)
<=>\(A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\)
=> A đạt giá trị nhỏ nhất là 5 khi \(\hept{\begin{cases}\left(y+x-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y+x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Cho x,y thõa x^2+y^2-xy=1. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x^4+y^4-x^2y^2.
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)