6x+x=28
tìm x
A. 4/x = y/21 = 28/29
B. x/y = 21/28
Tìm x,y
a: 4/x=y/21=28/29
=>x=4:28/29=29/7; y=28/29x21=588/29
b: x/y=21/28
nên x/y=3/4
=>4x=3y
cho x+5:2 x khác 28 và -28
tìm x sao cho A>2
\(A>2\Leftrightarrow\dfrac{x+5}{2}>2\Rightarrow x+5>4\Rightarrow x>-1\)
cho A= \(\dfrac{x+5}{-2}\) x khác +-28
tìm x sao cho A>2
Để A>2\(\Rightarrow\dfrac{x+5}{-2}>2\Rightarrow x+5>-4\Rightarrow x>-9\)
......
.........
.......
........
.......
......
.........
........
x = -1, x = 6
x = 1, x = 6
x = -1, x = -6
x = 2, x = -6
4
3
8
2
7
9
10
12
`3x+9=0`
`3x=-9`
`x=-3`
.
`(GM)/(AM) =1/3`
.
Có `3` giá trị có cùng tần số.
.
Mốt là: `7`.
.......
x = -1, x = 6
x = 1, x = 6
x = -1, x = -6
x = 2, x = -6
4
3
8
2
......
Xóa lựa chọn
......
.........
.......
........
.......
......
.........
........
x = -1, x = 6
x = 1, x = 6
x = -1, x = -6
x = 2, x = -6
4
3
8
2
7
9
10
12
......
Xóa lựa chọn
......
.........
.......
........
.......
......
.........
........
x = -1, x = 6
x = 1, x = 6
x = -1, x = -6
x = 2, x = -6
4
3
8
2
7
9
10
12
Cho biết : \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)=1
Tính : \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)=?
Bài 3: phân tích thành nhân tử:
1/ 9x^3-xy^2
2/x^2-3xy-6x+18y
3/x^2-3xy-6x+18y 3/6x(x-y)-9y^2+9xy
4/ 6xy-x^2+36-9y^2
5/ x^4-6x^2+5
6/ 9x62-6x-y^2+2y
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài5: 1/ 12x^3y^2/18xy^5
2/10xy-5x^2/2x^2-8y^2
3/ x^2-xy-x+y/x^2+xy-x-y
4/ (x+1)(x^2-2x+1)/(6x^2-6)(x^3-1)
5/ 2x^2-7x+3/1-4x^2
bài 5:
1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)
2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)
\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)
3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)
\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)
\(=\dfrac{1}{6\left(x^2+x+1\right)}\)
5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)
\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)
\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)
Bài 3:
1: \(9x^3-xy^2\)
\(=x\cdot9x^2-x\cdot y^2\)
\(=x\left(9x^2-y^2\right)\)
\(=x\left(3x-y\right)\left(3x+y\right)\)
2: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
3: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
4: \(6xy-x^2+36-9y^2\)
\(=36-\left(x^2-6xy+9y^2\right)\)
\(=36-\left(x-3y\right)^2\)
\(=\left(6-x+3y\right)\left(6+x-3y\right)\)
5: \(x^4-6x^2+5\)
\(=x^4-x^2-5x^2+5\)
\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)
6: \(9x^2-6x-y^2+2y\)
\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)
\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x+y-2\right)\)
`x^13 -6x^2 +6x^11 -6x^10 + ... - 6x^2 +6x-5` với x=5
Sửa đề: \(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
x=5 nên x+1=6
\(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
\(=x^{13}-x^{12}\left(x+1\right)+x^{11}\left(x+1\right)-x^{10}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-x\)
\(=x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-x\)
=0