Chứng minh
1 / căn 1 + 1 / căn 2 + ... + 1 / căn 35 > 10
chứng minh rằng: 1/căn 1+1/ căn 2+........+1/ căn 100 >10
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{82}}+...+\frac{1}{\sqrt{100}}\right)\)
\(>\frac{1}{\sqrt{1}}+\left(\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{9}}\right)+...+\left(\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\right)\)
\(>\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{10}{10}=10\)
1 / căn 1 + 1 / căn 2 + ... + 1 / căn 35 > 10
Câu 1: Chứng minh rằng:
1/ căn 1+1/căn2+1/căn 3+1/căn 4+1/căn 5+...+1/căn 100>10
Câu 2: Tìm các số nguyên dương x;y
\(2^x+2^y=72 \)
cho S=1/căn(2)+1/căn(2)^2+...+1/căn(2)2019+1/căn(2)2020 chứng minh S< căn(2) +1
Chứng minh: (1/ căn 1) + (1/ căn 2) + (1/ căn 3 ) + ... + (1/ căn 100) > 18
Chứng minh
1/ 2 căn 1+ 1/ 3 căn 2+ 1/4 căn 3+...+1/2005 căn 2004<2
chứng minh 1/ căn 1 + 1/ căn 2 + ..... + 1/ căn 64 > 14
Nhận thấy với mọi k \(\in\) N* ta có :
\(\left(\sqrt{k+1}-\sqrt{k}\right).\left(\sqrt{k+1}+\sqrt{k}\right)=\left(\sqrt{k+1}\right)^2-\left(\sqrt{k}\right)^2=k+1-k=1\)
\( \implies\)\(\frac{\left(\sqrt{k+1}-\sqrt{k}\right).\left(\sqrt{k+1}+\sqrt{k}\right)}{\sqrt{k+1}+\sqrt{k}}=\frac{1}{\sqrt{k+1}+\sqrt{k}}\)
\( \implies\) \(\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k+1}-\sqrt{k}\)
Thật vậy : \(\frac{1}{\sqrt{k}}=\frac{2}{2.\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}=2.\left(\sqrt{k+1}-\sqrt{k}\right)\)
Thay k = 1 ; 2 ; 3 ; ....; 64 ta được :
\(\frac{1}{\sqrt{1}}>2.\left(\sqrt{1+1}-\sqrt{1}\right)=2.\left(\sqrt{2}-\sqrt{1}\right)=2.\sqrt{2}-2.\sqrt{1}\)
\(\frac{1}{\sqrt{2}}>2.\left(\sqrt{2+1}-\sqrt{2}\right)=2.\left(\sqrt{3}-\sqrt{2}\right)=2.\sqrt{3}-2.\sqrt{2}\)
\(\frac{1}{\sqrt{3}}>2.\left(\sqrt{3+1}-\sqrt{3}\right)=2.\left(\sqrt{4}-\sqrt{3}\right)=2.\sqrt{4}-2.\sqrt{3}\)
. . . . . . . . . . . . . . . . . . . . . .
\(\frac{1}{\sqrt{64}}>2.\left(\sqrt{64+1}-\sqrt{64}\right)=2.\left(\sqrt{65}-\sqrt{64}\right)=2.\sqrt{65}-2.\sqrt{64}\)
Cộng vế với vế ta được :
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{64}}>2.\sqrt{2}-2.\sqrt{1}+2.\sqrt{3}-2.\sqrt{2}+....+2.\sqrt{65}-2.\sqrt{64}\)
\( \implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{64}}>2.\sqrt{65}-2.\sqrt{1}=2.\left(\sqrt{65}-\sqrt{1}\right)\) ( * )
Ta thấy : \(\sqrt{65}>\sqrt{64}\)
\( \implies\) \(\sqrt{65}-\sqrt{1}>\sqrt{64}-\sqrt{1}\)
\( \implies\) \(\sqrt{65}-\sqrt{1}>7\)
\( \implies\) \(2.\left(\sqrt{65}-\sqrt{1}\right)>2.7\)
\( \implies\) \(2.\left(\sqrt{65}-\sqrt{1}\right)>14\) ( ** )
Từ ( * ) ; ( ** )
\( \implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{64}}>14\left(đpcm\right)\)
cho a,b,c là 3 số thực không âm thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c)