Giải phương trình này vs 25x+7y=16
Cho hệ phương trình x + 0 y = - 2 5 x - y = - 9
Nghiệm của hệ phương trình này có phải là nghiệm của phương trình 3x – 7y = 1 hay không?
Thay x = -2, y = -1 vào phương trình 3x – 7y = 1, ta có:
3.(-2) – 7.(-1) = -6 + 7 = 1
Vậy x và y thỏa phương trình 3x – 7y = 1 nên (x; y) = (-2; -1) là nghiệm của phương trình 3x – 7y = 1.
Giải phương trình với nghiệm nguyên sau: 25x + 7y = 16. Mọi người ơi mọi người ơi giúp em cái đi nhá !!!
Giải các hệ phương trình sau:
.{4x + 7y = 16
{4x - 3y = -24
\(\left\{{}\begin{matrix}4x+7y=16\\4x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10y=40\\4x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=\dfrac{-24+3y}{4}=\dfrac{-24+12}{4}=-\dfrac{12}{4}=-3\end{matrix}\right.\)
giải phương trình sau:
\(\sqrt{25x-50}-\dfrac{\sqrt{x-2}-1}{2}=8\sqrt{\dfrac{9x-18}{16}}\)
\(Đk:x\ge2\\ PT\Leftrightarrow\dfrac{10\sqrt{x-2}-\sqrt{x-2}+1}{2}=6\sqrt{x-2}\\ \Leftrightarrow9\sqrt{x-2}+1=12\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=\dfrac{1}{3}\Leftrightarrow x-2=\dfrac{1}{9}\\ \Leftrightarrow x=\dfrac{19}{9}\left(tm\right)\)
Giải phương trình :
\(7y+2< 16\)
Trả lời
7y + 2 < 16
=> 7y < 14
=> y < 2
Hok tốt
\(7y+2< 16\)
\(\Rightarrow7y< 14\)
\(\Rightarrow y< 2\)
7y + 2 < 16
\(\Leftrightarrow7y< 14\)
\(\Leftrightarrow y< 2\)
Giải các hệ phương trình sau:
a.{2x-10y = -7
{10x + 11y = 31
b.{4x + 7y = 16
{4x - 3y = -24
a: Ta có: \(\left\{{}\begin{matrix}2x-10y=-7\\10x+11y=31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-50y=-35\\10x+10y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-60y=-66\\2x-10y=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{10}\\2x=-7+10y=-7+11=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{11}{10}\end{matrix}\right.\)
giải phương trình :3 lại 1 con khó nữa , mn giúp e vs
6x4+ 25x3+12x2-25x+6 =0
T.T
Mình giải cho bạn rồi, bạn vào xem lại lời giải nhé:
http://olm.vn/hoi-dap/question/430226.html
Giải các phương trình sau:
a) 7 − x = − 2 x + 3 ; b) 2 3 x + 1 = x + 1 ;
c) 2 5 x − 1 10 = 2 ; d) x − 1 2 8 x + 16 = 0 .
Giải phương trình dạng tích:
a.16-25x^2=0
b.(x+1)^2-4=0
c.(3x+1)^2-4x^2=0
d.(4x+1)-(x-2)^2=0
e.(2x+1)^2-(x+3)^2=0
\(a,\Leftrightarrow\left(4-5x\right)\left(4+5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1-2\right)\left(x+1+2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(3x+1-2x\right)\left(3x+1+2x\right)=0\\ \Leftrightarrow\left(x+1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{5}\end{matrix}\right.\\ d,Sửa:\left(4x+1\right)^2-\left(x-2\right)^2=0\\ \Leftrightarrow\left(4x+1-x+2\right)\left(4x+1+x-2\right)=0\\ \Leftrightarrow\left(3x+3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{5}\end{matrix}\right.\\ e,\Leftrightarrow\left(2x+1-x-3\right)\left(2x+1+x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)