X3 - 3x2 - x + 3 = 0
Tìm x
tìm x thỏa mãn:
a) (x2+2)(x-4)-(x+2)3=-16
b) 7x3+3x2-3x+1=0
c) x3+3x2+3x+28=0
a: Ta có: \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)^3=-16\)
\(\Leftrightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)
\(\Leftrightarrow-10x^2-10x=0\)
\(\Leftrightarrow-10x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
c: Ta có: \(x^3+3x^2+3x+28=0\)
\(\Leftrightarrow\left(x+1\right)^3=-27\)
\(\Leftrightarrow x+1=-3\)
hay x=-4
tìm x biết
a) (x-2)3-x(x+1)(x-1)+6x(x-3)=10
b) (x+1)3-(x-1)3-6(x-1)2= -10
c) x3+3x2+3x+28=0
d) x3-6x2+12x-7=0
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
Bài 13. Cho 2 đa thức: P(x)= 4x2 + x3 - 2x +3 -x-x3 +3x -2x2
Q(x)= 3x2 - 3x +2 -x3 +2x - x2
b)Tìm đa thức R(x) sao cho P(x) - Q(x) - R(x) =0
`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)
`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`
`= 2x^2+3`
`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)
`= -x^3+(3x^2-x^2)+(-3x+2x)+2`
`= -x^3+2x^2-x+2`
`P(x)-Q(x)-R(x)=0`
`-> P(X)-Q(x)=R(x)`
`-> R(x)=P(x)-Q(x)`
`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`
`-> R(x)=2x^2+3+x^3-2x^2+x-2`
`= x^3+(2x^2-2x^2)+x+(3-2)`
`= x^3+x+1`
`@`\(\text{dn inactive.}\)
a: P(x)-Q(x)-R(x)=0
=>R(x)=P(x)-Q(x)
=2x^2+3+x^3-2x^2+x-2
=x^3+x+1
Tìm x biết:
a) x3 - 7x2 - 9x + 63 = 0
b) x3 - 3x2 + 3x - 1 + 2.(x2 - x) = 0
Bài 4: Tìm x
a, (x + 1)2 - x (x - 3) = 2x + 3
b, (x + 2) (x - 3 ) - (x - 3)2 = 15
c, (x + 1)3 -(x3 + 3x2 + 2x - 3) = 0
\(a,\Leftrightarrow x^2+2x+1-x^2+3x-2x=3\\ \Leftrightarrow3x=2\Leftrightarrow x=\dfrac{3}{2}\\ b,\Leftrightarrow x^2-x-6-x^2+6x-9=15\\ \Leftrightarrow5x=30\Leftrightarrow x=6\\ c,\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2-2x+3=0\\ \Leftrightarrow x=-4\)
a) \(\left(x+1\right)^2-x\left(x-3\right)=2x+3\Rightarrow x^2+2x+1-x^2+3x=2x+3\)
\(\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
b) \(\left(x+2\right)\left(x-3\right)-\left(x-3\right)^2=15\Rightarrow x^2-3x+2x-6-\left(x^2-6x+9\right)=15\)
\(\Rightarrow5x=30\Rightarrow x=6\)
tìm x
a 5x3-7x2-15x+21=0
b (x-3)2=4x2-20x+25
c x+x2-x3-x4=0
d 2x3+3x2+2x+3=0
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)
Tìm x biết x 3 + 3 x 2 + 3 x + 1 = 0
A. x = -1
B. x = 1
C. x = -2
D. x = 0
Ta có
x 3 + 3 x 2 + 3 x + 1 = 0 ⇔ ( x + 1 ) 3 = 0
ó x + 1 = 0 ó x = -1
Vậy x = -1
Đáp án cần chọn là: A
1.rút gọn bt A= (x+2)3-2x(x+3)+(x3-8):(x-2)
2. tìm x biết:
a. 3x2-12x=0
b.4x2-1-4(1-2x)=0
Cho y = x 3 - 3 x 2 + 2 . Tìm x để: y ' > 0
y = x3 – 3x2 + 2.
⇒ y’ = (x3 – 3x2 + 2)’
= (x3)’ – (3x2)’ + (2)’
= 3x2 – 3.2x + 0
= 3x2 – 6x.
y’ > 0
⇔ 3x2 – 6x > 0
⇔ 3x(x – 2) > 0
⇔ x < 0 hoặc x > 2.
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0