Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kênh youtube: chaau high...
Xem chi tiết

Ta có: \(\Delta=\left\lbrack2\left(m-3\right)\right\rbrack^2-4\left(3m^2-8m+5\right)\)

\(=4\left(m^2-6m+9\right)-12m^2+32m-20\)

\(=4m^2-24m+36-12m^2+32m-20=-8m^2+8m+16\)

\(=-8\left(m^2-m-2\right)=-8\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì Δ>=0

=>-8(m-2)(m+1)>=0

=>(m-2)(m+1)<=0

=>-1<=m<=2

Theo Vi-et, ta có: \(\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m-3\right)\\ x_1x_2=\frac{c}{a}=3m^2-8m+5=\left(3m-5\right)\left(m-1\right)\end{cases}\)

\(x_1^2+2x_2^2-3x_1x_2=x_1-x_2\)

=>\(\left(x_1-x_2\right)\left(x_1-2x_2\right)-\left(x_1-x_2\right)=0\)

=>\(\left(x_1-x_2\right)\left(x_1-2x_2-1\right)=0\)

TH1: \(x_1-x_2=0\)

=>\(x_1=x_2\)

\(x_1+x_2=2\left(m-3\right)\)

nên \(x_1=x_2=\frac{2\left(m-3\right)}{2}=m-3\)

\(x_1x_2=3m^2-8m+5\)

=>\(3m^2-8m+5=\left(m-3\right)^2=m^2-6m+9\)

=>\(2m^2-2m-4=0\)

=>\(m^2-m-2=0\)

=>(m-2)(m+1)=0

=>\(\left[\begin{array}{l}m-2=0\\ m+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=2\left(nhận\right)\\ m=-1\left(nhận\right)\end{array}\right.\)

TH2: \(x_1-2x_2-1=0\)

=>\(x_1-2x_2=1\)

\(x_1+x_2=2\left(m-3\right)=2m-6\)

nên \(x_1-2x_2-x_1-x_2=1-2m+6=-2m+7\)

=>\(-3x_2=-2m+7\)

=>\(x_2=\frac{2m-7}{3}\)

\(x_1+x_2=2m-6\)

=>\(x_1=2m-6-\frac{2m-7}{3}=\frac{3\left(2m-6\right)-2m+7}{3}=\frac{4m-11}{3}\)

\(x_1x_2=3m^2-8m+5\)

=>\(\frac{\left(2m-7\right)\left(4m-11\right)}{9}=3m^2-8m+5\)

=>\(9\left(3m^2-8m+5\right)=\left(2m-7\right)\left(4m-11\right)\)

=>\(27m^2-72m+45=8m^2-50m+77\)

=>\(19m^2-22m-32=0\)

=>(19m+16)(m-2)=0

=>\(\left[\begin{array}{l}19m+16=0\\ m-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=-\frac{16}{19}\left(nhận\right)\\ m=2\left(nhận\right)\end{array}\right.\)

Thảo
Xem chi tiết
hnamyuh
3 tháng 6 2021 lúc 15:19

Để PT có hai nghiệm x1,x2 thì: 

Δ' = (-1)2 - 1.(3m-2) > 0

<=> m <1

Áp dụng Viet, ta có : 

x1 + x2 = -2

x1.x2 = 3m-2

Ta có : 

x12 + x22 = (x1 + x2)2 - 2x1.x2 = (-2)2 - 2(3m-2) = 20

<=> 4 -6m + 4 = 20

<=> m = -2 (thỏa mãn)

Vậy m = -2

Kunzy Nguyễn
Xem chi tiết
Nguyễn Tuấn
21 tháng 4 2016 lúc 21:09

CHÀO BẠN

Áp dụng Viét

x1*x2=4m (1)x1+x2=2(m+1) (2)

(*)       (x1+m)(x2+m)=3m^2+12

<=>x1*x2+m(x1+x2)=3m^2+12  (**)

thay (1);(2) vô (**) =>....

Mình bày hướng có chỗ nào sai tự sửa

Ngoc Khanh
Xem chi tiết
ひまわり(In my personal...
24 tháng 3 2021 lúc 13:26

\(a,\) \(x^2+5x-3m=0\left(1\right)\)

 \(\Rightarrow\Delta=b^2-4ac=5^2-4.\left(-3m\right)=12m+25\)

\(Để\) phương trình \((1)\) có 2 nghiệm  \(x_1,x_2\) ta có :

\(\Leftrightarrow\Delta\ge0\Rightarrow12m+25\ge0\)

\(\Rightarrow12m\ge-25\Rightarrow m\ge\dfrac{-25}{12}\)

 

 

Studio MT
22 tháng 2 lúc 16:28

a) x²+5x−3m=0 ⇒Δ=b²−4ac=52−4·(−3m)=12m+25

Để phương trình có 2 nghiệm $x_{1}$, $x_{2}$ ta có :

⇔Δ≥0⇒12m+25≥0

⇒12m≥−25

⇒m≥$\frac{-25}{12}$

b) Theo Viète ta có:

$\left \{ {{x_{1}+x_{2}=-5} \atop {x_{1}x_{2}=-3m}} \right. $

Ta có: $\frac{2}{x_{1}}$ + $\frac{2}{x_{2}}$ = $\frac{2x_{1} + 2x_{2}}{x_{1}^{2}x_{2}^{2}}$ = $\frac{2(x_{1}^{2}+x_{2}^{2})}{(x_{1}x_{1})^{2}}$ = $\frac{50+12m}{9m^2}$

$\frac{2}{x_{1}}$ · $\frac{2}{x_{2}}$ = $\frac{4}{(x_{1}x_{1})^{2}}$ =$\frac{4}{9m^2}$

Vậy $\frac{2}{x_{1}}$ và $\frac{2}{x_{2}}$ là 2 $n_{0}$ của phương trình:

${x^2}$ - $\frac{50+12m}{9m^2}$ $x$ + $\frac{4}{9m^2}$ = 0

Studio MT
22 tháng 2 lúc 16:40

a) x²+5x−3m=0

Để phương trình có 2 nghiệm $x_{1}$, $x_{2}$ ta có :

⇔ Δ ≥ 0 ⇒ 12m+25 ≥ 0

⇒12m≥−25 ⇒m≥$\frac{-25}{12}$

b) Theo Viète ta có: $\left \{ {{x_{1}+x_{2}=-5} \atop {x_{1}x_{2}=-3m}} \right. $

Ta có: $\frac{2}{x_{1}^2}$ + $\frac{2}{x_{2}^2}$ = $\frac{2x_{1}^2 + 2x_{2}^2}{x_{1}^{2}x_{2}^{2}}$ = $\frac{2(x_{1}^{2}+x_{2}^{2})}{(x_{1}x_{1})^{2}}$ = $\frac{50+12m}{9m^2}$

$\frac{2}{x_{1}^2}$ · $\frac{2}{x_{2}^2}$ = $\frac{4}{(x_{1}x_{1})^{2}}$ =$\frac{4}{9m^2}$

Vậy $\frac{2}{x_{1}^2}$ và $\frac{2}{x_{2}^2}$ là 2 $n_{0}$ của phương trình:

${x^2}$ - $\frac{50+12m}{9m^2}$ $x$ + $\frac{4}{9m^2}$ = 0

thái như
Xem chi tiết
Phạm Công Tráng
10 tháng 3 2017 lúc 12:37

Hóng

HAHAHAHA
Xem chi tiết
Trương Huy Hoàng
14 tháng 3 2021 lúc 16:38

Sửa lại đề:

x2 - (3m - 1)x + 2m2 - m = 0

Ta có: \(\Delta\) = [-(3m - 1)]2 - 4.1.(2m2 - m) = 9m2 - 6m + 1 - 8m2 + 4m = m2 - 2m + 1 = (m - 1)2 \(\ge\) 0

\(\Rightarrow\) x1 = \(\dfrac{3m-1+m-1}{2}=\dfrac{4m-2}{2}=2m-1\)

x2 = \(\dfrac{3m-1-m+1}{2}=\dfrac{2m}{2}=m\)

Ta có: x1 = x22 \(\Leftrightarrow\) 2m - 1 = m2 \(\Leftrightarrow\) m2 - 2m + 1 = 0 \(\Leftrightarrow\) (m - 1)2 = 0

\(\Leftrightarrow\) m - 1 = 0 \(\Leftrightarrow\) m = 1

Vậy m = 1

Chúc bn học tốt!

....
Xem chi tiết
Hà thúc vy
Xem chi tiết
Lê Minh Thuận
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 1 2024 lúc 20:59

\(\text{Δ}=\left[-2\left(m-2\right)\right]^2-4\cdot1\cdot\left(3m-3\right)\)

\(=\left(2m-4\right)^2-4\left(3m-3\right)\)

\(=4m^2-16m+16-12m+12\)

\(=4m^2-28m+28\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(4m^2-28m+28>=0\)

\(\Leftrightarrow4m^2-2\cdot2m\cdot7+49-21>=0\)

=>\(\left(2m-7\right)^2>=21\)

=>\(\left[{}\begin{matrix}2m-7>=\sqrt{21}\\2m-7< =-\sqrt{21}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>=\dfrac{7+\sqrt{21}}{2}\\m< =\dfrac{7-\sqrt{21}}{2}\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=6\)

=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=36\)

=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=36\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

=>\(\left(-2m+4\right)^2-2\left(3m-3\right)-2\left|3m-3\right|=36\)

=>\(4m^2-16m+16-6m+6-6\left|m-1\right|=36\)

=>\(4m^2-22m+22-36=6\left|m-1\right|\)

=>\(6\left|m-1\right|=4m^2-22m-14\)(1)

TH1: m>=1

(1) tương đương với \(4m^2-22m-14=6\left(m-1\right)\)

=>\(4m^2-22m-14-6m+6=0\)

=>\(4m^2-28m-8=0\)

=>\(m^2-7m-2=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{2}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{2}\left(loại\right)\end{matrix}\right.\)

TH2: m<1

(1) tương đương với: \(4m^2-22m-14=6\left(1-m\right)\)

=>\(4m^2-22m-14=6-6m\)

=>\(4m^2-16m-20=0\)

=>m^2-4m-5=0

=>(m-5)(m+1)=0

=>\(\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

Xem chi tiết
Bạch Trúc
2 tháng 6 2019 lúc 16:47

chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^

\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)

đến đây Vi-ét đc òi

Incursion_03
2 tháng 6 2019 lúc 17:09

Gotcha Tokoyami

Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)

          \(=m^2-4m+4+4m^2-12m+16\)

          \(=5m^2-16m+20\)

           \(=5\left(m^2-\frac{16}{5}m+4\right)\)

            \(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)

            \(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)

Nên pt có 2 nghiệm phân biệt với mọi m 

a, Với m = 0 thì pt trở thành

\(x^2+2x-4=0\)

Có \(\Delta'=1+4=5>0\)

\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)

b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)

nên pt có 2 nghiệm trái dấu

c,  Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới