Tính A biết A=1.4+4.7+...+19.22
tính 1.4+4.7+7.10+...+19.22
\(\text{Đặt: S= biểu thức cần tính}\)
\(\Rightarrow9S=1.4.7+4.7.9+......+19.22.9+4.2\)
\(\Rightarrow9S=1.4.7+4.7\left(10-1\right)+...+19.22\left(25-16\right)+8\)
\(\Rightarrow9S=19.22.25+8\Rightarrow S=1162\)
1.4 + 4.7 + 7.9 + .....+ 19.22
Mik cần cực gấp nhé !
đề ???
Đăt A = 1.4 + 4.7 + 7.10 + ....+ 19.22
=> 9A = 1.4.9 + 4.7.9 + 7.10.9 + ...+ 19.22.9
9A = 1.4.(7+2) + 4.7.(10-1) + 7.10.(13-4) + ...+ 19.22.(25-16)
9A = 1.4.7 + 4.2 + 4.7.10 - 1.4.7 + 7.10.13 - 4.7.10 + ....+ 19.22.25 - 16.19.22
9A = 4.2 + 19.22.25
A = 1 162
\(C=\frac{3}{1.4}+\frac{3}{4.7}+.......+\frac{3}{19.22}\)
Dạng này có nhiều rồi, bạn tham khảo câu hỏi tương tự cũng được
\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{22}.\)
\(C=\frac{1}{1}-\frac{1}{22}\)
\(C=\frac{21}{22}\)
\(C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{19.22}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{22}\)
\(=1-\frac{1}{22}\)
\(=\frac{21}{22}\)
=>c= 1/1-1/4+1/4-1/7+....+1/19-1/22
=> c= 1-1/22
=> C= 21/22
Các bạn giúp mk lên 1oosp nha.ai k mk mk k lại
Bài 1: Tính tổng S
S=1/1.4+1/4.7+1/7.10+1/10.13+1/13.16+1/16.19+1/19.22
Bài 1: Tính tổng S
\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{19.22}\)
\(4S=\dfrac{4}{1.4}+\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{19.22}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{19}-\dfrac{1}{22}\)
\(=1-\dfrac{1}{22}\)
\(S=\dfrac{21}{22}.\dfrac{1}{4}=\dfrac{21}{88}\)
Ta có:
A = 1/1.4 + 1/4.7 + 1/7.10 +...+ 1/16.19
3A= 1/3.(3/1.4 + 3/4.7 + 3/7.10 + ... + 3/16.19)
= 1/3. (1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/16 - 1/19)
= 1/3.(1 - 1/19)
= 1/3. 18/19
= 6/19
1. E = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}+\dfrac{3}{19.22}\)
2. (x-4)(x-5)=0
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
Tính C=1.4+2.5+3.6+4.7+...+1006.1009
Tính S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...\)
biết tổng S có 100 số hạng.
So sánh A với 1, biết A= 3/1.4+3/4.7+3/7.10+....+3/61.64+3/64.67
( 31/1.4= 31 trên 3.4)
\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}+\dfrac{3}{64\cdot67}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\)
\(A=1-\dfrac{1}{67}\) < 1
=> A<1
Ta có:
\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{61.64}+\dfrac{3}{64.67}\)
\(=3.\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\right)\)
\(=3.\left(1-\dfrac{1}{67}\right)\)
\(=3.\dfrac{66}{67}\)
\(=\dfrac{198}{67}\)
Vì \(\dfrac{198}{67}\) có tử lớn hơn mẫu nên \(\dfrac{198}{67}>1\)
Vậy \(A>1\)
sửa bài:
... \(=1-\dfrac{1}{67}\)
\(=\dfrac{66}{67}\)
Vì \(\dfrac{66}{67}\) có tử nhỏ hơn mẫu nên \(\dfrac{66}{67}< 1\)
Vậy \(A< 1\)
tính
A=1.4+4.7+7.10+.......+2014.2017
Tính tổng A= 2/1.4+ 2/4.7+ 2/7.10+......+2/97.100
A= 2/1.4+2/4.7+2/7.10+...+2/97.100
= 2.(1/1.4+1/4.7+1/7.10+...+1/97.100)
= 2.(1/1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
= 2.(1/1-1/100)
= 2.(99/100)
=99/50
\(A=\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+\dfrac{2}{7\cdot10}+...+\dfrac{2}{97\cdot100}\)
\(A=\dfrac{2}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{97\cdot100}\right)\)
\(A=\dfrac{2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=\dfrac{2}{3}\cdot\left(1-\dfrac{1}{100}\right)\)
\(A=\dfrac{2}{3}\cdot\dfrac{99}{100}\)
\(A=\dfrac{33}{50}\)
\(A=\dfrac{2}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{2}{3}\times\dfrac{99}{100}=\dfrac{33}{50}\)