cho f(x) là đa thức có hệ số nguyên và f(1)=2 cmr;f(7) ko the la scp
Giả sử F(x) là 1 đa thức với hệ số nguyên và không có số nào trong các số F(0), F(2), ... , F(2015) chia hết cho 2016. CMR: ĐA thức F(x) không có nghiệm nguyên
Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây nhé.
Cho đa thức f(x) có hệ số nguyên biết f(0) , f(1) là các số lẻ . CMR đa thức f(x) không có nghiệm nguyên .
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn
với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
~~~~~~~~~~~~
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn
với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
~~~~~~~~~~~~
Cho đa thức f(x)=ax^2+bx+c là một đa thức nguyên ( đa thức có các hệ số là các số nguyên) . Cmr nếu f(1) , f(2) , f(3) đều chia hết cho 7 thì f(m) chia hết cho 7 với mọi m nguyên
Ta có:
\(f\left(1\right)=a+b+c\text{⋮7 }\)
\(f\left(2\right)=4a+2b+c⋮7\)
\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)
\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)
Mà \(3a+b⋮7\)
\(\Rightarrow c⋮7\)
Mà \(a+b+c⋮7\)
\(\Rightarrow a+b⋮7\)
Mà \(4a+2b+c⋮7\)
\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)
\(2\text{̸ ⋮̸7}\)
\(\Rightarrow2a+b⋮7\)
Mà \(a+b⋮7\)
\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)
Có \(a⋮7;c⋮7;a+b+c⋮7\)
\(\Rightarrow b⋮7\)
\(f\left(m\right)=am^2+bm+c\)
Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)
\(\Rightarrow a.x^2+bx+c⋮7\)
Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7
Cho đa thức f(x) có các hệ số nguyên. Biết f(!) . f(2) = 2013
CMR: Đa thức f(x) không có nghiệm nguyên
a) Cho đa thức f(x) thỏa mã đkiện
x.f.(x+1)=(x+2).f(x)
CMR : Đa thức f(x) có ít nhất 2 nghiệm
b) CMR : Nếu gtrị của bthức f(x)=ax^2+ bx +c chia hết cho 2007 với mọi x nguyên ( a,b là các số nguyên ) thì các hệ số a,b,c đều chia hết cho 2007
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)
Cho f(x) là đa thức có các hệ số nguyên. Biết f(0) và f(1) là các số lẻ. Chứng minh ràng đa thức f(x) không có nghiệm nguyên
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Đa thức f(x) có các hệ số nguyên. Biết rằng f(1).f(2)=2017. CMR f(x) không có nghiệm nguyên
Cho đa thức bậc ba f(x) với hệ số của x3 là một số nguyên dương và biết f(5)-f(3)=2014.Cmr: f(7)-f(1) là hợp số
Cho đa thức bậc 3 f(x) với hệ số của x3 là số nguyên dương và f(5) - f(3) = 2010. CMR f(7) - f(1) là hợp số