tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n : 8 dư 7 ; chia 31 dư 28
tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n:8 dư 7 ,n:31 dư 8
tìm số tự nhiên n lớn nhất có 3 chữ số , sao cho n chia cho 8 dư 7, cho 31 dư 28
vì số tự nhiên n chia 8 dư 7, chia 31 dư 28 nên khi số tự nhiên n thêm vào 65 đơn vị thì chia hết cho cả 8 và 31
vì số n là số có ba chữ số nên khi số n thêm vào 65 đơn vị thì số số mới nhỏ hơn 1065
Số tự nhiên lớn nhất chia hết cho cả 8 và 31 mà nhỏ hơn 1065 là :
992
số tự nhiên n lớn nhất thỏa mãn đề bài là:
992 - 65 = 927
Đáp số 927
Tìm số tự nhiên N lớn nhất có 3 chữ số sao cho N:8 dư 7 , N:31 dư 28
n chia 8 dư 7 => (n+1) chia hết cho 8
n chia 31 dư 28 nên (n+3) chia hết cho 31
Ta có ( n+ 1) +64 chia hết cho 8 ( vì 64 chia hết cho 8)
= (n+3) + 62 chia hết cho 31
Vậy (n+65) vừa chia hết cho 31 và 8
Mà (31,8) = 1( ước chung lớn nhất)
=> n+65 chia hết cho 248
Ta thấy Vì n<=999 nên (n+65) <= 1064
<=> (n+65)/ 248 <= 4,29
vì (n+65)/ 248 nguyên và n lớn nhất nên (n+65)/ 248 = 4
<=> n= 927
Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n chia 8 dư 7, chia 31 dư 28.
A. 927
B. 183
C. 431
D. 729
1) Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 3, 5, 7 thì được số dư lần lượt là 2, 3, 4?
2) Tìm số tự nhiên lớn nhất có 3 chữ số sao cho khi chia n cho 8 dư 7, chia n cho 31 dư 28?
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3; 5; 7). Do 3; 5 và 7 là các số nguyên tố cùng nhau nên BCNN(3; 5; 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8; 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8; 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Tìm số tự nhiên N lớn nhất có 3 chữ số sao cho N:8 dư 7 ; :31 dư 28.
tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n:8 dư 7, n:31 dư 28
n =8q+7 =31p+28
n+65 = 8q+72 =31p+93
=>n+65 chia hết cho 8;31
=> n+65 là BC(8;31) =B(248)
=> n =248k-65 với k thuộc N*
vì n có 3 chữ số => a<1000 => 248k-65<1000
=> k < 4,2...
n lớn nhất khi k lớn nhất
=> k =4
=> n =248.4 -65 = 927
Đs: 927
Tìm số tự nhiên lớn nhất N có 3 chữ số sao cho N:8 dư 7, N:31 dư 28
Lời giải:
Theo đề ra, $N$ chia 31 dư 28 nên $N$ có dạng $31k+28$ với $k$ tự nhiên.
$N-7\vdots 8$
$\Rightarrow 31k+28-7\vdots 8$
$\Rightarrow 31k+21\vdots 8$
$\Rightarrow 31k-32k+21-16\vdots 8$
$\Rightarrow 5-k\vdots 8\Rightarrow k-5\vdots 8$
$\Rightarrow k=8m+5$.
$\Rightarrow N=31k+28=31(8m+5)+28=248m+183$
$N$ là số có 3 chữ số nên:
$248m+183<1000\Rightarrow m< 3,29$
Để $N$ lớn nhất thì $m$ lớn nhất $\Rightarrow m=3$.
$N=248.3+183=927$
Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n chia 8 dư 7 chia cho 31 dư 28