tìm nghiệm nguyên của phương trình
6x\(^2\)y\(^3\)+3x\(^2\)-10y\(^3\)=-2
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2
bài 1
Ta có 2xy+x+y=83
<=>4xy+2x+2y=166
2x*(2y+1)+(2y+1)=167
(2x+1)*(2y+1)=167
=>2x+1;2y+1 thuộc Ư(167)
do x,y nguyên dương =>2TH
TH1 2x+1=1;2y+1=167=>x=...;y=....
TH2 2x+1=167;2y+1=1=>x=...;y=....
Tìm nghiệm nguyên của phương trình: 3x2 + 13xy + 26(x − y) + 39y2 = 2022
Tìm tập nghiệm S của phương trình 3 x 2 - 2 x = 4 x - 2 .
![]()
![]()
![]()
![]()
Cho phương trình 3x2-c=a(x2-2x+1)-b(x-1) tìm 3 số nguyên a,b,c để phương trình có nghiệm với mọi x thược R.
=>3x^2-c=ax^2-2ax+a-bx+b
=>3x^2-c-a*x^2+2ax-a+bx-b=0
=>x^2(3-a)+x(2a+b)-a-b-c=0
Để phương trình luôn có nghiệm thì 3-a=0 và 2a+b=0 và a+b+c=0
=>a=3; b=-6; c=-a-b=-3+6=3
Bất phương trình 3 x 2 - 6 x - 16 < 9 x + 2 có số
nghiệm nguyên là ?
A.11
B. 9
C.10
D. 12
Cho đa thức: Q(x) = x4 + 3x2 + 1
a. Phân tích đa thức Q(x) thành nhân tử.
b. Tìm nghiệm nguyên của phương trình y2 = x4 + 3x2 + 1.
\(3x^2+4x+1=3x^2+3x+x+1=\left(x+1\right)\left(3x+1\right)\)
Cho phương trình 2 - m 3 - 3 m 2 + 1 . log 81 x 3 - 3 x 2 + 1 + 2 + 2 - x 3 - 3 x 2 + 1 - 2 . log 3 1 m 3 - 3 m 2 + 1 + 2 = 0 . Gọi S là tập hợp tất cả các giá trị m nguyên để phương trình đã cho có số nghiệm thuộc đoạn 6 ; 8 . Tính tổng bình phương tất cả các phần tử của tập S.
A. 20
B. 28
C. 14
D. 10
Bài 5: Cho phương trình x2 – 4x + 2m - 3 = 0 a) Tìm điều kiện của m để phương trình có 2 nghiệm x1, X2 phân biệt thoả tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau. b) Tìm m để phương trình có 2 nghiệm X), x2 thoả mãn điều kiện x1 = 3x2
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
Cho phương trình x2 -2(m-2) +2m -5 =0 với m là tham số
a) Chứng minh rằng phương trình có nghiệm với mọi giá trị của m
b) Tìm m để phương trình có 2 nghiệm x1 , x2 thỏa mãn x1 - 3x2 = m
Giải các phương trình sau: 2 x 2 - 1 - 3 x 2 = 3 x 2 - 1 - 2 x 2 + 2 . Tổng các nghiệm của phương trình là:
A. 2
B. 3
C. 0
D. 2 3